

Departmental Curriculum

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	First Year First Semester										
	Mandatory Induction Program- 3 weeks duration										
SI	Category	Subject Code	Subject Name	1	Numb		Credits				
No.				L	T	P					
The	ory										
1	Basic Science course	BS-PH101/ BS-CH101	Physics-I (Gr-A)/ Chemistry-I(Gr-B)	3	1	0	4				
2	Basic Science course	BS-M101/ BS-M102	Mathematics -IA*/ Mathematics -IB *	3	1	0	4				
3	Engineering Science Courses	ES-EE101	Basic Electrical Engineering	3	1	0	4				
	Total Theory				3	0	12				
Prac	etical										
1	Basic Science course	BS-PH191/ BS-CH191	Physics-I Laboratory (Gr-A)/ Chemistry-I Laboratory (Gr-B)	0	0	3	1.5				
2	Engineering Science Courses	ES-EE191	Basic Electrical Engineering Laboratory	0	0	2	1				
3	Engineering Science Courses	ES-ME191/ ES-ME192	Engineering Graphics & Design(Gr-B)/ Workshop/Manufacturing Practices(Gr-A)	1	0	4	3				
		Total Praction	cal	1		9	5.5				
		Total of First Se	mester	10	3	9	17.5				

^{*} Mathematics -IA (BS-M101) - CSE & IT Mathematics -IB (BS-M102) - All stream except CSE & IT

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

		First Year	Second Semester				
SI No.	Category	Subject Code	Subject Name	of co	al Nun ntact l	ours	Credits
110.		Couc		L	T	P	
The	ory						
1	Basic Science courses	BS-PH201/ BS-CH201	Physics-I (Gr-B)/ Chemistry-I (Gr-A)	3	1	0	4
2	Basic Science courses	BS-M201/ BS-M202	Mathematics -IIA#/ Mathematics -IIB#	3	1	0	4
3	Engineering Science Courses	ES-CS201	Programming for Problem Solving	3	0	0	3
4	Humanities and Social Sciences including Management courses	HM-HU201	English	2	0	0	2
		11	2	0	13		
Prac	Practical						
1	Basic Science courses	BS-PH291/ BS-CH291	Physics-I Laboratory (Gr-B)/ Chemistry-I Laboratory (Gr-A)	0	0	3	1.5
2	Engineering Science Courses	ES-CS291	Programming for Problem Solving	0	0	4	2
3	Engineering Science Courses	ES-ME291/ ES-ME292	Engineering Graphics & Design(Gr-A)/ Workshop/Manufacturing Practices(Gr-B)	1	0	4	3
4	Humanities and Social Sciences including Management courses	nces including HM-HU291 Language Laboratory		0	0	2	1
		Total Practical	!	1	0	13	7.5
	Tot	tal of Second Sen	nester	12	2	13	20.5

Mathematics -II (BS-M201) - CSE & IT

Mathematics -II (BS-M202) - All stream except CSE & IT

Group-A Group-B		Group-A	Group-B
-----------------	--	---------	---------

1 _{st} Year 1 st Semester	Physics-I (BS-PH101); Workshop/Manufacturing Practices (ES-ME192)	Chemistry-I (BS-CH101); Engineering Graphics & Design (ES-ME191)
1 st Year 2 nd Semester	Chemistry-I (BS-CH201); Engineering Graphics & Design (ES-ME291)	Physics-I (BS-PH201); Workshop/Manufacturing Practices (ES-ME292)

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

3rd Semester

Theory:

THEO	, ,						
S1.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.			P	er week		Contact	
			L	T	P	Hrs	
1	PC-EE 301	Electric Circuit Theory	3	1	0	4	4
2	PC-EE 302	Analog Electronics	3	0	0	3	3
3	PC-EE 303	Electromagnetic field	3	0	0	3	3
		theory					
4	ES-ME 301	Engineering Mechanics	3	0	0	3	3
5	BS-M 301	Mathematics-III	3	0	0	3	3
6	BS-EE301	Biology for Engineers	3	0	0	3	3
7	MC-EE 301	Indian Constitution	3	0	0	3	0
		TOTAL OF SEMESTER:				22	19

Sl.	CODE	Paper	Contact periods		Total	Credits	
			P	er week	-	Contact	
No.			L	T	P	Hrs	
1	PC-EE 391	Electric Circuit Theory	0	0	2	2	1
		Laboratory					
2	PC-EE 392	Analog Electronics	0	0	2	2	1
		laboratory					
		,					
3	PC-CS 391	Numerical Methods	0	0	2	2	1
		laboratory					
		Total of Practical /				06	3
		Sessional					
TOT	AL OF SEMES	TER:				28	22

Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

4th Semester

Theory:

Sl.	CODE	Paper	Contact periods			Total	Credits
No.		_	P	er week	-	Contact	
			L	T	P	Hrs	
1	PC-EE 401	Electric machine-I	3	0	0	3	3
2	PC-EE 402	Digital Electronic	3	0	0	3	3
3	PC-EE 403	Electrical and Electronics	3	0	0	3	3
		Measurement					
4	ES-EE 401	Thermal Power	3	0	0	3	3
		Engineering					
5	HM-EE401	Values and Ethics in	3	0	0	3	3
		profession					
6	MC- EE401	Environmental Science	3	0	0	3	0
					_		, ,
		TOTAL OF SEMESTER:				18	15

Sl.	CODE	Paper	Contact period			Total	Credits
No.			P	er week		Contact	
			L	T	P	Hrs	
1	PC-EE 491	Electric machine-I	0	0	2	2	1
		laboratory					
2	PC-EE 492	Digital electronics	0	0	2	2	1
		laboratory					
3	PC-EE 493	Electrical and electronic	0	0	2	2	1
		measurement laboratory					
		·					
4	ES-ME 491	Thermal power	0		2	2	1
		engineering laboratory					
		Total of Practical /				08	4
		Sessional					
TOT	AL OF SEMES	TER:				26	19

Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

5th Semester

Theory:

Sl.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.			P	er week	[Contact	
			L	T	P	Hrs	
1	PC-EE 501	Electric machine-II	3	0	0	3	3
2	PC-EE 502	Power system-I	3	0	0	3	3
3	PC-EE 503	Control system	3	0	0	3	3
4	PC-EE 504	Power electronics	3	0	0	3	3
5	PE-EE 501	A. High voltage	3	0	0	3	3
		Engineering					
		B. Power Plant Engineering					
		C. Renewable & Non					
		conventional energy					
6	OE-EE 501	A. Data structure &	3	0	0	3	3
		algorithm					
		B. Object oriented					
		programming					
		C. Computer organization					
		& architecture					
		TOTAL OF SEMESTER:				18	18

Sl.	CODE	Paper	Contact periods		ods	Total	Credits
No.			P	er week	-	Contact	
			L	T	P	Hrs	
1	PC-EE 591	Electric Machine-II	0	0	2	2	1
		laboratory					
2	PC-EE 592	Power system-I laboratory	0	0	2	2	1
3	PC-EE 593	Control system laboratory	0	0	2	2	1
	DC FE 504	D. D.	0	0	2	2	1
4	PC-EE 594	Power Electronics	0	0	2	2	1
		laboratory					
		Total of Practical /				08	4
		Sessional					
TOT	AL OF SEMES	STER:				26	22

Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

6th Semester

Theory:

Sl.	CODE	Paper	Contact period			Total	Credits
No.			P	er week		Contact	
			L	T	P	Hrs	
1	PC-EE 601	Power System-II	3		0	3	3
2	PC-EE-602	Micro processor & micro controller	3	0	0	3	3
3	PE-EE 601	A. Digital control systemB. HVDC transmissionC. Electrical Machine Design	3	0	0	3	3
4	PE-EE 602	A. Electrical and Hybrid vehicle B. Power quality & FACTS C. Industrial Electrical systems	3	0	0	3	3
5	OE-EE 601	A. Digital Signal Processing B. Communication Engineering C. VLSI & Microelectronics	3	0	0	3	3
6	HM-EE 601	Economics for Engineers	3	0	0	3	3
		TOTAL OF SEMESTER:				18	18

Practical / Sessional:

S1.	CODE	Paper	Contact periods		ods	Total	Credits
No.			Per week		-	Contact	
			L	T	P	Hrs	
1	PC-EE 691	Power system-II laboratory	0	0	2	2	1
2	PC-EE692	Microprocessor &	0	0	2	2	1
		microcontroller laboratory					
2	PC-EE 681	Electrical & Electronic	1	0	4	5	3
		design laboratory					
		Total of Practical /				09	05
		Sessional					
TOT	AL OF SEMES	TER:				27	23

Summer Internship of 3-week duration after 6th semester. Students will be assessed based on submission of report on internship and presentation in a seminar in 7th semester

Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

7th Semester

Theory:

Sl.	CODE	Paper	Contact periods Total			Total	Credits
No.			Per week			Contact	
			L	T	P	Hrs	
1	PC-EE 701	Electric Drive	3	0	0	3	3
2	PE-EE 701	A. Control system Design	3	0	0	3	3
		B. Electrical Energy					
		conservation & Auditing					
		C. Power generation					
		economics					
3	OE-EE701	A. Artificial intelligence	3	0	0	3	3
		B. Internet of things					
		C. Computer graphics					
4	OE-EE702	A. Embedded system	3		0	3	3
		B. Digital image processing					
		C. Computer network					
5	HM-EE701	Principle of Management	3	0	0	3	3
		TOTAL OF SEMESTER:				15	15

Sl.	CODE	Paper	Contact periods		Total	Credits	
No.			Per week			Contact	
			L T P			Hrs	
1	PC-EE 791	Electric Drive laboratory	0	0	2	2	1
2	PW-EE 781	Project stage-I	0	0	4	4	2
3	PW-EE782	Seminar	0	0	0	0	1
		Total of Practical /				06	04
		Sessional					
TOT	TOTAL OF SEMESTER:					21	19

8th Semester

Theory:

Sl.	CODE	Paper	Contact periods			Total	Credits
No.			Per week			Contact	
			L	T	P	Hrs	
1	PC-EE 801	Utilization of Electric	3	0	0	3	3
		Power					
2	PE- EE 801	A. Line -commutated and	3	0	0	3	3
		active PWM rectifiers					
		B. Power system dynamics					
		& control					
		C. Advanced Electric					
		Drives					
		D. Industrial Automation					
		and Control					
3	OE-EE 801	A. Soft computing	3	0	0	3	3
		Techniques					
		B. Biomedical					
		Instrumentation.					
		C. Introduction to Machine					
		learning					
		D. Sensors and Transducers					
		TOTAL OF SEMESTER:				09	09

Sl.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.			P	er week		Contact	
			L	T	P	Hrs	
1	PW-EE 881	Project stage-II	0	0	16	16	8
		Total of Practical /				16	08
		Sessional					
TOT	TOTAL OF SEMESTER:					25	17

Syllabus & Course Outcomes

1st Semester

Course Code : BS-PH101/ BS-PH201	Category: Basic Science Courses
Course Title: Physics-I	Semester : First/ Second
L-T-P : 3-1-0	Credit:4
Pre-Requisites:	

Course objectives:

Basic concepts of mechanics, optics and its applications, electricity, magnetism and qualitative understanding of concepts of quantum physics and statistical mechanics.

1. Mechanics (7L)

Problems including constraints & friction. Basic ideas of vector calculus and partial differential equations. Potential energy function F = -grad V, equipotential surfaces and meaning of gradient. Conservative and non-conservative forces. Conservation laws of energy & momentum. Non-inertial frames of reference. Harmonic oscillator; Damped harmonic motion forced oscillations and resonance. Motion of a rigid body in a plane and in 3D. Angular velocity vector. Moment of inertia.

2. Optics (5L)

- Distinction between interference and diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits (only the expressions for max;min, & intensity and qualitative discussion of fringes); diffraction grating(resolution formulae only), characteristics of diffration grating and its applications.
- Polarisation: Introduction, polarisation by reflection, polarisation by double reflection, scattering of light, circular and elliptical polarisation, optical activity.
- Lasers: Principles and working of laser: population inversion, pumping, various modes, threshold population inversion with examples.

3. Electromagnetism and Dielectric Magnetic Properties of Materials (8L)

- Maxwell's equations. Polarisation, permeability and dielectric constant, polar and non-polar dielectrics, internal fields in a solid, Clausius- Mossotti equation(expression only), applications of dielectrics.
- Magnetisation, permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications.

4. Quantum Mechanics (16L)

Introduction to quantum physics, black body radiation, explanation using the photon concept,
 Compton effect, de Broglie hypothesis, wave-particle duality, verification of matter waves,
 uncertainty principle, Schrodinger wave equation, particle in box, quantum harmonic oscillator,
 hydrogen atom.

5. Statistical Mechanics (8L)

 Macrostate, Microstate, Density of states, Qualitative treatment of Maxwell Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Course outcomes:

Students will be familiar with

- · Basic concepts of mechanics
- Bragg's Law and introduction to the principles of lasers, types of lasers and applications.
- · Various terms related to properties of materials such as, permeability, polarization, etc.
- Some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials.
- Simple quantum mechanics calculations.

Learning Resources:

- 1. Introduction to Electrodynamics, David J. Griffiths, Pearson Education India Learning Private Limited
- 2. Principles of Physics, 10ed, David Halliday, Robert Resnick Jearl Walker, Wiley
- 3. Electricity, Magnetism, and Light, Wayne M. Saslow, Academic Press
- 4. Engineering Mechanics (In SI Units) (SIE), S. Timoshenko, D.H. Young, J.V. Rao, Sukumar Pati, McGraw Hill Education
- 5. Classical mechanics, Narayan Rana, Pramod Joag, McGraw Hill Education
- 6. Introduction to Classical Mechanics, R Takwale, P Puranik, McGraw Hill Education
- 7. Engineering Mechanics, M.K. Harbola, Cengage India
- 8. An Introduction to Mechanics (SIE), David Kleppner, Robert Kolenkow, McGraw Hill Education
- 9. Principles of mechanics, John L. Synge and Byron A. Griffith, New York, McGraw-Hill
- 10. Mechanics (Dover Books on Physics), J. P. Den Hartog, Dover Publications Inc.
- 11. Engineering Mechanics: Dynamics, L.G. Kraige J.L. Meriam, Wiley
- 12. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Robert Eisberg, Robert Resnick, Wiley
- 13. Introduction to Quantum Mechanics, J. Griffiths David, Pearson Education
- 14. Modern Quantum Mechanics, J. J. Sakurai, Cambridge University Press
- 15. Optics, Hecht, Pearson Education
- 16. Optics, Ghatak, McGraw Hill Education India Private Limited
- 17. Fundamentals of Statistical and Thermal Physics, Reif, Sarat Book Distributors
- 18. Statistical Mechanics, Pathria, Elsevier
- 19. Statistical Physics, L.D.Landau, E.M. Lifshitz, Butterworth-Heinemann

SurTech/ Department of Electrical Engineering / Student Handbook / 2022

Course Code : BS-CH101/ BS-CH201	Category: Basic Science Courses
Course Title : Chemistry-I	Semester : First/ Second
L-T-P : 3-1-0	Credit:4
Pre-Requisites:	

Detailed contents

i) Atomic and molecular structure (10 lectures)

Schrodinger equation. Particle in a box solutions and their applications for simple sample. Molecular orbitals of diatomic molecules (e.g.H₂). Energy level diagrams of diatomic. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

ii) Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterisation techniques. Diffraction and scattering. iii)Intermolecular forces and potential energy surfaces (4 lectures)

Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena.

iv)Use of free energy in chemical equilibria (8 lectures)

First and second laws of thermodynamics and thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion. Use of free energy considerations in metallurgy through Ellingham diagrams.

v) Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries

vi)Stereochemistry (4 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

vii) Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.

Course Ourcomes:

	COURSE OUTCOMES (COs)				
CODE	DESCRIPTION				
BS- CH101.CO 1	Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces and list major chemical reactions that are used in the synthesis of molecules				
BS- CH101.CO 2	Rationalise bulk properties and processes using thermodynamic considerations				
BS- CH101.CO 3	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques				
BS- CH101.CO 4	Rationalise periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.				

CO-PO Mapping

	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	3	2	3	2	1	2	1	1	2	2
CO2	3	3	3	2	3	3	-	1	1	-	-	3
CO3	3	3	3	3	2	2	2	1	2	3	3	1
CO4	3	3	3	3	1	3	1	-	1	-	1	1
Average	2.75	3	3	2.5	1.5	2.25	1.33	1.33	1.25	2.0	2.0	1.75

Learning Resources:

- 1. Engineering Chemistry, Satyaprakash, Khanna Book Publishing, Delhi
- 2. University chemistry, by B. H. Mahan
- 3. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 4. Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 5. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 6. Physical Chemistry, by P. W. Atkins
- 7. Spectroscopy of Organic Compounds, by P.S.Kalsi, New Age International Pvt Ltd Publishers
- 8. Physical Chemistry, P. C. Rakshit, Sarat Book House
- 9. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

Course Code : BS-M101	Category: Basic Science Course
Course Title: Mathematics - I A	Semester : First (CSE & IT)
L-T-P : 3-1-0	Credit: 4
Pre-Requisites: High School Mathematics	

Module	Description of Topic	Lectures
No.	Calculus (Integration):	Hours
	Evolutes and involutes; Evaluation of definite and improper integrals; Beta and	
1	Gamma functions and their properties; Applications of definite integrals to evaluate	8
	surface areas and volumes of revolutions.	
	Calculus (Differentiation):	
	Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with	
2	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	6
	Matrices:	
	Matrices, Vectors: addition and scalar multiplication, matrix multiplication; Linear	
	systems of equations, linear Independence, rank of a matrix, determinants,	_
3	Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan	7
	elimination.	
	Vector Spaces:	
	Vector Space, linear dependence of vectors, Basis, Dimension; Linear	
4	transformations (maps), Range and Kernel of a linear map, Rank and Nullity,	9
4	Inverse of a linear transformation, Rank-Nullity theorem, composition of linear	9
	maps, Matrix associated with a linear map.	
	Vector Spaces (Continued):	
	Eigenvalues, Eigenvectors, Symmetric, Skew-symmetric, and Orthogonal	
5	Matrices, Eigenbases.	10
) 	Diagonalization; Inner product spaces, Gram-Schmidt orthogonalization.	10

Course Outcomes:

The students will be able to:

Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.

Understand the domain of applications of mean value theorems to engineering problems.

Learn different types of matrices, concept of rank, methods of matrix inversion and their applications.

Understand linear spaces, its basis and dimension with corresponding applications in the field of computer science.

Learn and apply the concept of eigen values, eigen vectors, diagonalisation of matrices and orthogonalization in inner product spaces for understanding physical and engineering problems

Learning Resources:

- 1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 7. S.K. Mapa, Higher Algebra: Abstract and Linear, Sarat Book House Pvt.Ltd.
- 8. Hoffman and Kunze: Linear algebra, PHI.

Course Code : BS-M102	Category: Basic Science Course
Course Title: Mathematics -I B	Semester: First (All stream except CSE & IT)
L-T-P : 3-1-0	Credit: 4
Pre-Requisites: High School Mathematics	

Module No.	Description of Topic	Lectures Hours
	Calculus (Integration):	
	Evolutes and involutes; Evaluation of definite and improper integrals; Beta and	8
1	Gamma functions and their properties; Applications of definite integrals to	
	evaluate surface areas and volumes of revolutions.	
	Calculus (Differentiation):	
	Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with	6
2	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	
	Sequence and Series:	
	Convergence of sequence and series, tests for convergence; Power series,	11
3	Taylor's series, series for exponential, trigonometric and logarithm functions;	
	Fourier series: Half range sine and cosine series, Parseval's theorem.	
	Multivariate Calculus:	
	Limit, continuity and partial derivatives, Directional derivatives, Total	9
4	derivative; Tangent plane and normal line; Maxima, minima and saddle points;	
	Method of Lagrange multipliers; Gradient, Curl and Divergence.	
	Matrices:	
	Inverse and rank of a matrix, Rank-nullity theorem; System of linear equations;	8
5	Symmetric, Skew-symmetric and Orthogonal matrices; Determinants;	
	Eigenvalues and Eigenvectors; Diagonalization of matrices; Cayley-Hamilton	
	Theorem, and Orthogonal transformation.	

Course Outcomes:

On successful completion of the learning sessions of the course, the student will be able to:

COURSE OUTCOMES (COs)							
CODE	DESCRIPTION						
BS-M 102.CO 1	Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.						
BS-M	Understand the domain of applications of mean value						
102.CO 2	theorems to engineering problems.						

BS-M 102.CO 3	Learn the tools of power series and Fourier series to analyze engineering problems and apply the concept of convergence of infinite series in many approximation techniques in engineering disciplines.
BS-M 102.CO 4	Apply the knowledge for addressing the real life problems which comprise of several variables or attributes and identify extremum points of different surfaces of higher dimensions.
BS-M 102.CO 5	Learn and apply the concept of rank-nullity, eigen values, eigen vectors, diagonalization and orthogonalization of matrices for understanding physical and engineering problems.

CO-PO Mapping:

	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	2	2	2	-	-	1	2	2
CO2	3	3	2	2	2	2	-	-	2	-	1	2
CO3	3	3	3	2	2	-	2	-	2	1	-	1
CO4	3	3	2	2	3	2	-	-	-	-	2	2
CO5	3	3	2	2	2	2	1	-	1	1	2	1
Average	3	3	2.4	2	2.2	2	1.67	1	1.67	1	1.75	1.6

Learning Resources:

- 1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.

Course Code : ES-EE101	Category: Engineering Science Courses
Course Title: Basic Electrical Engineering	Semester : First
L-T-P : 3-1-0	Credit: 4
Pre-Requisites:	

Detailed contents:

Module 1: DC Circuits (8 hours)

Electrical circuit elements (R, L and C), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

Module 2: AC Circuits (8 hours)

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.

Module 3: Transformers (6 hours)

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

Module 4: Electrical Machines (8 hours)

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited dc motor. Construction and working of synchronous generators.

Module 5: Power Converters (6 hours)

DC-DC buck and boost converters, duty ratio control. Single-phase and three-phase voltage source inverters; sinusoidal modulation.

Module 6: Electrical Installations (6 hours)

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

Course Outcomes

Course Name: ES-EE-101

(Basic Electrical Engineering)

Course outcome codes	Statement					
ES-EE-101.1	To describe fundamentals of DC and AC circuits					
ES-EE-101.2	To explain the operating principle of transformer					
ES-EE-101.3	To illustrate construction, working of Electrical Machines					
ES-EE-101.4	To classify different power converters and installation process					

Basic Electrical Engineering

COs	РО	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
ESEE- 101.1	3	2	2	2	2	2	1	-	2	2	2	3	2	2
ESEE - 101.2	3	2	2	2	2	2	1	-	2	2	2	3	2	2
ESEE - 101.3	3	2	2	2	2	2	1	-	2	2	2	3	2	2
ESEE - 101.4	3	2	2	2	2	2	1	-	2	2	2	3	2	2
Averag e	3	2	2	2	2	2	1	-	2	2	2	3	2	2

Learning Recourses:

- 1. Ritu Sahdev, Basic Electrical Engineering, Khanna Book Publishing Co. (P) Ltd., Delhi.
- 2. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 3. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 4. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 5. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010. SurTech/ Department of Electrical Engineering / Student Handbook / 2022
 - 6. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

Course Code : BS-PH191/ BS-PH291	Category: Basic Science course
Course Title: Physics-I Laboratory	Semester : First/ Second
L-T-P : 0-0-3	Credit:1.5
Pre-Requisites:	

Choose 10 experiments including at least one from Optics, Electricity and Magnetism and Quantum Mechanics and at least a total of six from these three groups.

Experiments in Optics

- 1. Determination of dispersive power of the material of a prism
- 2. Determination of wavelength of a monochromatic light by Newton's ring
- 3. Determination of wavelength of a monochromatic light by Fresnel's bi-prism
- 4. Determination of wavelength of the given laser source by diffraction method

Electricity & Magnetism experiments

- 1. Determination of thermo electric power of a given thermocouple.
- 2. Determination of specific charge (e/m) of electron by J.J. Thompson's method.
- 3. Determination of dielectric constant of a given dielectric material.
- 4. Determination of Hall coefficient of a semiconductor by four probe method.
- 5. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.
- 6. Determination of resistance of ballistic galvanometer by half deflection method and study of variation of logarithmic decrement with series resistance.
- 7. Determination of unknown resistance using Carey Foster's bridge
- 8. Study of Transient Response in LR, RC and LCR circuits using expeyes
- 9. Generating sound from electrical energy using expeyes

Experiments in Quantum Physics

- 1. Determination of Stefan-Boltzmann constant.
- 2. Determination of Planck constant using photocell.
- 3. Determination of Lande-g factor using Electron spin resonance spectrometer.
- 4. Determination of Rydberg constant by studying Hydrogen spectrum.
- 5. Determination of Band gap of semiconductor.
- 6. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.

Miscellaneous experiments

- 1. Determination of Young's modulus of elasticity of the material of a bar by the method of flexure
- 2. Determination of bending moment and shear force of a rectangular beam of uniform cross-section
- 3. Determination of modulus of rigidity of the material of a rod by static method
- 4. Determination of rigidity modulus of the material of a wire by dynamic method
- 5. To determine the moment of inertia of a body about an axis passing through its centre of gravity and to determine the modulus of rigidity of the material of the suspended wire
- 6. Determination of coefficient of viscosity by Poiseulle's capillary flow method

On successful completion of the learning sessions of the course, the learner will be able to:

COURSE OUTCOMES (COs)					
CODE	DESCRIPTION				
BS-PH191.CO1	Ability to increase power of observation and reasoning and to think and work with precision and accuracy in daily life. Use Slide callipers and screw gauge, familiar with concept of Band gap of semiconductor and dielectric constant				
BS-PH191.CO2	Get the opportunity to verify the validity of various laws taught in curriculum, Familiar with dispersive power of the material of a prism, Newton's ring, Planck constant				
BS-PH191.CO3	Familiar with Hall coefficient of a semiconductor Electron spin resonance spectrometer, Young's modulus, Poiseulle's capillary flow method for viscosity measurement.				

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	2	-	-	2	1	2
CO2	3	3	3	3	3	1	2	-	-	2	1	2
CO3	3	3	3	3	3	1	2	-	-	2	1	2

Course Code: BS-CH191/BS-CH291	Category: Basic Science Courses
Course Title: Chemistry-I Laboratory	Semester : First/ Second
L-T-P : 0-0-3	Credit:1.5
Pre-Requisites:	
	Credit:1.5

Choose 10 experiments from the following:

- 1. Conduct metric titration for determination of the strength of a given HCl solution by titration against a standard NaOH solution.
- 2. pH- metric titration for determination of strength of a given HCl solution against a standard NaOH solution.
- 3. Determination of dissolved oxygen present in a given water sample.

- 4. To determine chloride ion in a given water sample by Argentometric method (using chromate indicator solution)
- 5. Determination of surface tension and viscosity
- 6. Thin layer chromatography
- 7. Ion exchange column for removal of hardness of water
- 8. Determination of the rate constant of a reaction
- 9. Determination of cell constant and conductance of solutions
- 10. Potentiometry determination of redox potentials and emfs
- 11. Saponification/acid value of an oil
- 12. Chemical analysis of a salt
- 13. Determination of the partition coefficient of a substance between two immiscible liquids
- 14. Adsorption of acetic acid by charcoal
- 15. Use of the capillary viscosimeters to the demonstrate of the isoelectric pointas the pH of minimum viscosity for gelatin sols and/or coagulation of the white part of egg.

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-EE191	Category: Engineering Science Courses					
Course Title: Basic Electrical Engineering Laboratory	Semester : First					
L-T-P : 0-0-2	Credit: 1					
Pre-Requisites:						

Choose 10 experiments from the following:

1. First activity: Introduction to basic safety precautions and mentioning of the do's and Don'ts. Noting

down list of experiments to be performed, and instruction for writing the laboratory reports by the

students. Group formation. Students are to be informed about the modalities of evaluation.

- 2. Introduction and uses of following instruments:
 - (a) Voltmeter
 - (b) Ammeter
 - (c) Multimeter
 - (d) Oscilloscope

Demonstration of real life resistors, capacitors with color code, inductors and autotransformer.

- 3. Demonstration of cut-out sections of machines: DC machine, Induction machine, Synchronous machine and single phase induction machine.
- 4. Calibration of ammeter and Wattmeter.
- 5. Determination of steady state and transient response of R-L, R-C and R-L-C circuit to a step change in

voltage.

- 6. Determination of steady state response of R-L and R-C and R-L-C circuit and calculation of impedance and power factor.
- 7. Determination of resonance frequency and quality factor of series and parallel R-L-C circuit. 8. (a) Open circuit and short circuit test of a single-phase transformer
 - (b) Load test of the transformer and determination of efficiency and regulation
- 9. Demonstration of three phase transformer connections. Voltage and current relationship, phase shifts

between the primary and secondary side.

- 10. Measurement of power in a three phase unbalanced circuit by two wattmeter method.
- 11. Determination of Torque -Speed characteristics of separately excited DC motor.

- 12. Determination of Torque speed characteristics and observation of direction reversal by change of
 - phase sequence of connection of Induction motor.
- 13. Determination of operating characteristics of Synchronous generator.
- 14. Demonstration of operation of (a) DC-DC converter (b) DC-AC converter (c) DC-AC converter for
 - speed control of an Induction motor
- 15. Demonstration of components of LT switchgear.

ES-EE-191 Course Outcomes							
ESEE191.1	Demonstrate the characteristics of carbon, tungsten & florescent lamps.						
ESEE191.2	Verify the different electrical parameters obtained using network theorems.						
ESEE191.3	Experiment on R-L-C series & parallel circuits						

SUBJECT	COs	PROGRAM OUTCOMES(POs)											
CODE		PO	РО	РО	РО	РО	РО	PO	РО	РО	PO1	PO1	PO1
		1	2	3	4	5	6	7	8	9	0	1	2
ESEE191	ESEE191.	3	2	2	2	2	2	1	-	2	2	2	3
	ESEE191. 2	3	2	2	2	2	2	1	-	2	2	2	3
	ESEE191.	3	2	2	2	2	2	1	-	2	2	2	3
	AVERAG E	3	2	2	2	2	2	1	-	2	2	2	3

Course Code : ES-ME191/ ES-ME 291	Category: Engineering Science Courses					
Course Title: Engineering Graphics & Design	Semester : First/ Second					
L-T-P : 1-0-4	Credit: 3					
Pre-Requisites:						

Sl. No.	Content	Lecture (L)	Practical (P)	
	INTRODUCTION TO ENGINEERING DRAWING			
1	Principles of Engineering Graphics and their significance, usage of	1	4	
	Drawing instruments, lettering, Different types of lines and their use;	1	4	
	Drawing standards and codes.			
	LETTERING, DIMENSIONING, SCALES			
2	Plain scale, Diagonal scale and Vernier Scales.	1	4	

	GEOMETRICAL CONSTRUCTION AND CURVES		
	Construction of polygons, Conic sections including the Rectangular	1	4
3	Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid,	1	4
	Involute, Archemedian Spiral.		
	PROJECTION OF POINTS, LINES, SURFACES		
	Principles of Orthographic Projections-Conventions - 1st and 3rd angle		
4	projection, Projections of Points and lines inclined to both planes;	1	4
	Projections of planes (Rectangle, pentagon, Hexagon etc.) inclined Planes		
	- Auxiliary Planes.		
	PROJECTION OF REGULAR SOLIDS		
5	Regular solids inclined to both the Planes- Auxiliary Views; Draw	1	4
3	simple annotation, dimensioning and scale (Cube, Pyramid, Prism,	1	4
	Cylinder, Cone).		
	COMBINATION OF REGULAR SOLIDS, FLOOR PLANS		
6	Regular solids in mutual contact with each other like Spheres in contact	1	4
	with cones standing on their base. Floor plans that include: windows,	1	4
	doors, and fixtures such as WC, bath, sink, shower, etc.		
	ISOMETRIC PROJECTIONS		
	Principles of Isometric projection - Isometric Scale, Isometric		
7	Views, Conventions; Isometric Views of lines, Planes, Simple and	1	4
	compound Solids; Conversion of Isometric Views to Orthographic		
	Views and Vice-versa, Conventions;		
	SECTIONS AND SECTIONAL VIEWS OF RIGHT ANGULAR		
	SOLIDS	1	
8	Prism, Cylinder, Pyramid, Cone - Auxiliary Views; Development of		4
0	surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone;	1	7
	Draw the sectional orthographic views of geometrical solids, objects		
	from industry and dwellings (foundation to slab only)		

	OVERVIEW OF COMPUTER GRAPHICS, CUSTOMISATION&		
	CAD DRAWING		
	listing the computer technologies that impact on graphical		
	communication, Demonstrating knowledge of the theory of CAD		
	software [such as: The Menu System, Toolbars (Standard, Object		
	Properties, Draw, Modify and Dimension), Drawing Area (Background,		
	Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut		
	menus (Button Bars), The Command Line (where applicable), The Status	1	4
9	Bar, Different methods of zoom as used in CAD, Select and erase	1	4
	objects.; Isometric Views of lines, Planes, Simple and compound Solids];		
	Set up of the drawing page and the printer, including scale settings,		
	Setting up of units and drawing limits; ISO and ANSI standards for		
	coordinate dimensioning and tolerancing; Orthographic constraints,		
	Snap to objects manually and automatically; Producing drawings		
	by using various coordinate input entry methods to draw straight lines,		
	Applying various ways of drawing circles;		
	ANNOTATIONS, LAYERING & OTHER FUNCTIONS		
	applying dimensions to objects, applying annotations to drawings;		
	Setting up and use of Layers, layers to create drawings, Create, edit		
	and use customized layers; Changing line lengths through modifying		
	existing lines (extend/lengthen); Printing documents to paper using		
	the print command; orthographic projection techniques; Drawing		
	sectional views of composite right regular geometric solids and project		
10	the true shape of the sectioned surface; Drawing annotation, Computer-	2	8
	aided design (CAD) software modeling of parts and assemblies.		
	Parametric and non-parametric solid, surface, and wireframe models. Part		
	editing and two-dimensional documentation of models. Planar projection		
	theory, including sketching of perspective, isometric, multiview,		
	auxiliary, and section views. Spatial visualization exercises.		
	Dimensioning guidelines, tolerancing techniques; dimensioning and scale		
	multi views of dwelling;		

DEMONSTRATION OF A SIMPLE TEAM DESIGN PROJECT						
Geometry and topology of engineered components: creation of						
engineering models and their presentation in standard 2D blueprint form						
and as 3D wire-frame and shaded solids; meshed topologies for						
engineering analysis and tool-path generation for component						
manufacture; geometric dimensioning and tolerancing; Use of solid-	2	0				
modeling software for creating associative models at the component and	2	8				
assembly levels; floor plans that include: windows, doors, and fixtures						
such as WC, bath, sink, shower, etc. Applying colour coding according to						
building drawing practice; Drawing sectional elevation showing						
foundation to ceiling; Introduction to Building Information Modelling						
(BIM).						
	Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modeling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling	Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modeling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling				

Course Outcomes:

On successful completion of the learning sessions of the course, the student will be able to:

CO1	Learn basics of drafting and use of drafting tools which develops the fundamental skills of industrial drawings.
CO2	Know about engineering scales, dimensioning and various
	geometric curves necessary to understand design of machine
	elements.
CO3	Understand projection of line, surface and solids to create the
	knowledge base of orthographic and isometric view of structures
	and machine
CO4	Become familiar with computer aided drafting useful to share the
	design model to different section of industries as well as for
	research & development.

CO-PO Mapping:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	2	1	1	1	-	1	-	1	1
CO2	3	-	2	2	-	1	-	-	1	1	1	1
CO3	2	2	2	1	-	1	1	1	1	-	-	1
CO4	1	-	2	2	2	1	-	-	1	1	1	1

General Instructions

- 1. In every topic some problems are to be done in the class and some are to be given to students as home assignment.
- 2. The problems for class work are to be prepared on drawing sheet of A1 size in the class/ using AutoCAD software.

3. The problems for home assignments are to be prepared on drawing copy/using AutoCAD software. SurTech/ Department of Electrical Engineering / Student Handbook / 2022

- 4. Print out of every assignment is to be taken for CAD Drawings on Drawing sheets (A4 Sheets).
- 5. A title block must be prepared in each sheet/assignment.

Following is the list of drawing instruments that required for making engineering drawings on paper with perfection.

- 1. **Drawing Board**
- 2. Mini drafter/ Set-squares (45°-45° & 60°-90°), T-square
- 3. Protractor (180°, 360°)
- 4. Scales (Plain, Diagonal)
- 5. Compass (Small and Large)
- 6. Divider (Small and Large)
- 7. French Curves
- 8. Drawing paper (A1 Size)
- 9. Drawing pencil (H, HB, B)
- 10. Sharpener
- 11. Eraser
- 12. Drawing pins & clips
- 13. Duster or handkerchief etc.

Learning Resources:

- 1. Pradeep Jain, Ankita Maheswari, A.P. Gautam, Engineering Graphics & Design, Khanna Publishing House
- 2. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication
- 4. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 5. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers
- 6. Corresponding set of CAD Software Theory and User Manuals

Course Code : ES-ME192/ ES-ME 292	Category: Engineering Science Courses					
Course Title: Workshop/ Manufacturing Practices	Semester : First/ Second					
L-T-P : 1-0-4	Credit:3					
Pre-Requisites:						

(i) Lectures & videos:

Detailed contents:

- 1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods
- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical & Electronics
- 5. Carpentry
- 6. Plastic moulding, glass cutting
- 7. Metal casting
- 8. Welding (arc welding & gas welding), brazing

(ii) Workshop Practice:

Machine shop (8 hours)

Typical jobs that may be made in this practice module:

To make a pin from a mild steel rod in a lathe.

To make rectangular and vee slot in a block of cast iron or mild steel in a shaping and / or milling machine.

Fitting shop (8 hours)

Typical jobs that may be made in this practice module:

To make a Gauge from MS plate.

Carpentry (8 hours)

Typical jobs that may be made in this practice module:

To make wooden joints and/or a pattern or like.

Welding shop (8 hours (Arc welding 4 hrs + gas welding 4 hrs))

Typical jobs that may be made in this practice module:

ARC WELDING (4 hours): To join two thick (approx 6mm) MS plates by manual metal arc welding.

GAS WELDING (4 hours): To join two thin mild steel plates or sheets by gas welding.

Casting (8 hours)

Typical jobs that may be made in this practice module:

One/ two green sand moulds to prepare, and a casting be demonstrated.

Smithy (4 hours) \sim 4 hours

Typical jobs that may be made in this practice module:

A simple job of making a square rod from a round bar orlike.

Plastic moulding & Glass cutting (4 hours)

Typical jobs that may be made in this practice module:

For plastic moulding, making at least one simple plastic component should be made.

For glass cutting, three rectangular glass pieces may be cut to make a kaleidoscope using a black colour diamond cutter, or similar other components may be made.

Electrical & Electronics (8 hours)

Familiarization with LT switchgear elements, making its sketches and noting down its specification. Kitkat fuse, Glass cartridge fuse, Plastic fuse holders (optional), Iron clad isolators, MCB style isolators, Single phase MCB, Single-phase wire, wiring cable.

Demonstration of domestic wiring involving two MCB, two piano key switches, one incandescent lamp, one LED lamp and plug point.

Simple wiring exercise to be executed to understand the basic electrical circuit.

Simple soldering exercises to be executed to understand the basic process of soldering.

Fabrication of a single-phase full wave rectifier with a step down transformer using four diodes and electrolytic capacitor and to find its volt-ampere characteristics to understand basic electronic circuit fabrication.

Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

Course Outcomes:

On successful completion of the learning sessions of the course, the student will be able to:

CO1	Gain basic knowledge of Workshop Practice and Safety useful for our daily living.
	in ving.
CO ₂	Identify Instruments of a pattern shop like Hand Saw, Jack Plain, Chisels etc and
	performing operations like such as Marking, Cutting etc used in manufacturing
	processes.
CO3	Gain knowledge of the various operations in the Fitting Shop using Hack Saw,
	various files, Scriber, etc to understand the concept of tolerances applicable in all
	kind of manufacturing.
CO4	Get hands on practice of in Welding and various machining processes which give
	a lot of confidence to manufacture physical prototypes in project works.

CO & PO Mapping:

	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	1	-	-	-	2	-	1	3	-	1	1
	CO2	2	2	1	1	1	1	1	2	1	1	-	-
	CO3	2	-	2	-	-	1	-	1	1	1	1	2
SurTech/ Department of Electrical Engineering / Student Handbook / 2022													
_	CO4	1	1	1	2	1	3	1	3	2	-	-	1

Learning Resources:

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 2. Kalpakjian S. and Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.
- 3. Gowri P. Hariharan and A. Suresh Babu,"Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

2nd Semester

Course Code : BS-M201	Category: Basic Science Course			
Course Title: Mathematics - II A	Semester : Second (CSE &IT)			
L-T-P : 3-1-0	Credit: 4			
D D ''' II' 1 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

Pre-Requisites: High School Mathematics and BS-M101

Module No.	Description of Topic	Lectures Hours						
	Basic Probability: Probability spaces, conditional probability, independence;							
1	Discrete random variables, Independent random variables, the Multinomial							
	distribution, Poisson approximation to the Binomial distribution, infinite sequences							
	of Bernoulli trials, sums of independent random variables; Expectation of Discrete							
	Random Variables, Moments, Variance of a sum, Correlation coefficient,							
	Chebyshev's Inequality.							
	Continuous Probability Distributions:							
2	Continuous random variables and their properties, Distribution functions and	4						
	densities, Normal, Exponential and Gamma densities.							
	Bivariate Distributions:	5						
3	Bivariate distributions and their properties, distribution of sums and quotients,							
-	Conditional densities, Bayes' rule.							
	Basic Statistics:	8						
4	Measures of Central tendency, Moments, Skewness and Kurtosis, Probability							
	distributions: Binomial, Poisson and Normal and evaluation of statistical							
	parameters for these three distributions, Correlation and regression - Rank							
	correlation.							
	Applied Statistics:							
5	Curve fitting by the method of least squares- fitting of straight lines, second degree	8						
	parabolas and more general curves. Test of significance: Large sample test for							
	single proportion, difference of proportions, single mean, difference of means, and							
	difference of standard deviations.							
6	Small samples:							
	Test for single mean, difference of means and correlation coefficients, test for ratio	4						
	of variances - Chi-square test for goodness of fit and independence of attributes.							

Course Outcomes:

On successful completion of the learning sessions of the course, the student will be able to:

COURSE OUTCOMES (COs)								
CODE	DESCRIPTION							
BS-M 201.CO 1	Learn the ideas of probability and random variables, calculate probabilities using conditional probability, rule of total probability and Bayes' theorem.							
BS-M 201.CO 2	Illustrate the Various discrete and continuous probability distribution with their properties and their applications in physical and engineering environment.							
BS-M 201.CO 3	Understand the basic ideas of statistics with different characterization of a univariate and bivariate data set.							
BS-M 201.CO 4	Apply statistical tools for analyzing data samples and drawing inference on a given data set.							

CO & PO Mapping:

	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	1	1	-	-	-	-	-	2
CO2	3	3	2	1	2	2	2	-	2	-	1	2
CO3	3	3	1	2	2	-	1	-	2	-	2	1
CO4	3	3	2	2	3	2	-	-	-	-	1	2
Average	3	3	2.67	2.33	2.67	1.67	1.5	-	2	-	1.33	1.75

Learning Resources:

- 1. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons
- 3. S. Ross, A First Course in Probability, Pearson Education India
- 4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley.
- 5. John E. Freund, Ronald E. Walpole, Mathematical Statistics, Prentice Hall.
- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 7. N.G. Das, Statistical Methods (Combined Volume), Tata-McGraw Hill.

Course Code : BS-M202	Category: Basic Science Course						
Course Title: Mathematics - II B	Semester : Second (All stream except CSE & IT)						
L-T-P : 3-1-0	Credit: 4						
Pre-Requisites: High School Mathematics and BS-M102							

Description of Topic	Lectures Hours					
Multivariate Calculus (Integration):						
Multiple Integration: Double integrals (Cartesian), change of order of integration						
in double integrals, change of variables (Cartesian to Polar), Applications: Areas						
and volumes, Center of mass and Gravity (constant and variable densities); Triple						
integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications						
involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals,						
vector line integrals, scalar surface integrals, vector surface integrals, Theorems of						
Green, Gauss and Stokes.						
First order ordinary differential equations:						
Exact, linear and Bernoulli's equations, Equations not of first degree: equations	5					
solvable for p, equations solvable for y, equations solvable for x and Clairaut's	-					
type.						
Ordinary differential equations of higher orders:						
Second order linear differential equations with constant coefficients, Use of D-						
operators, Second order linear differential equations with variable coefficients,	9					
method of variation of parameters, Cauchy-Euler equation; Power series solutions;						
Legendre polynomials, Bessel functions of the first kind and their properties.						
Complex Variable - Differentiation						
Differentiation of complex functions, Cauchy-Riemann equations, Analytic						
functions, Harmonic functions, determination of harmonic conjugate, elementary	6					
analytic functions (exponential, trigonometric, logarithmic) and their properties;						
Conformal mappings, Mobius transformations and their properties.						
Complex Variable - Integration						
Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral						
formula (without proof), Liouville's theorem and Maximum-Modulus theorem	9					
(without proof); Taylor's series, Zeros of analytic functions, Singularities,						
Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of						
definite integral involving sine and cosine, Evaluation of certain improper integrals						
using the Bromwich contour.						
	Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, change of variables (Cartesian to Polar), Applications: Areas and volumes, Center of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable - Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable - Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals					

Course Outcomes:

The students will be able to:

COURSE OUTCOMES (COs)								
CODE	DESCRIPTION							
BS-M 202.CO 1	Learn the methods for evaluating multiple integrals and their applications to different physical problems.							
BS-M 202.CO 2	Understand different techniques to solve first and second order ordinary differential equations with its formulation to address the modelling of systems and problems of engineering sciences.							
BS-M 202.CO 3	Learn different tools of differentiation and integration of functions of a complex variable that are used with various other techniques for solving engineering problems.							
BS-M 202.CO 4	Apply different types of transformations between two 2-dimensional planes for analysis of physical or engineering problems.							

CO-PO Mapping:

<u>արթուց.</u>												
	РО	РО	РО	РО	РО	РО	РО	PO	РО	PO	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	2	2	2	-	-	1	2	2
CO2	3	3	2	2	2	2	-	-	2	-	1	2
CO3	3	3	1	1	2	-	2	-	2	1	-	1
CO4	3	3	2	2	3	2	-	-	-	-	2	2
Average	3	3	2	1.75	2.25	2	2	-	2	1	1.67	1.75

Learning Resources:

- 1. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 7. E. L. Ince, Ordinary Differential Equations, Dover Publications.
- 8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, Mc-Graw Hill.

Course Code : ES-CS201	Category: Engineering Science Courses
Course Title: Programming for Problem Solving	Semester : Second
L-T-P : 3-0-0	Credit:3
Pre-Requisites:	

Detailed contents

Unit 1: Introduction to Programming (4 lectures)

Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.) - (1 lecture).

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm:

Flowchart/Pseudocode with examples. (1 lecture)

From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code- (2 lectures)

Unit 2: Arithmetic expressions and precedence (2 lectures)

Unit 3: Conditional Branching and Loops (6 lectures)

Writing and evaluation of conditionals and consequent branching (3 lectures)

Iteration and loops (3 lectures)

Unit 4: Arrays (6 lectures)

Arrays (1-D, 2-D), Character arrays and Strings

Unit 5: Basic Algorithms (6 lectures)

Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

Unit 6: Function (5 lectures)

Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference

Unit 7: Recursion (4 -5 lectures)

Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

Unit 8: Structure (4 lectures)

Structures, Defining structures and Array of Structures

Unit 9: Pointers (2 lectures)

Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation)

Unit 10: File handling (only if time is available, otherwise should be done as part of the lab)

Course Outcomes:

The student will learn

COs	CO Statement
CS 201.1	Students will be able to <i>describe</i> the meaning of system of numbers, logic gates and the basic
CS 201.1	anatomy of a Computer.
	Students will be able to <i>understand</i> the inherent meaning of the basic elements of C Programming
CS 201.2	Language like; constants, variables, operators, operator precedence etc., and identify the use of
	data types and C statements and <i>classify</i> the statements.
	Students will be able to <i>organize</i> the statements in appropriate order to <i>prepare</i> a complete
CS 201.3	program that solves a specific problem and analyze a program to point out the bugs that might be
	present in it and change it to achieve the goal.
CS 201.4	Students will be able to construct the final program and create the executable module for
CS 201.4	execution purpose.

CO-PO Mapping:

В	Basic Computation & Principles of Computer Programming(CS201)												
co's	PO'S												
cos	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	
CS 201.1	_	_	3	2	1	_	2	3	1	_	2	2	
CS 201.2	1	3	2	2	_	2	_	3	2	3	2	2	
CS 201.3	3	2	1	2	_	2	3	2	2	2	2	3	
CS 201.4	3	2	3	3	2	2	2	1	2	2	3	_	
Average	2.33	2.33	2.25	2.25	1.5	2.00	2.33	2.25	2.33	2.33	2.25	2.33	

Learning Resources:

- 1. R. S. Salaria, Computer Concepts and Programming in C, Khanna Publishers
- 2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- 3. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill
- 4. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

Course Code : ES-CS291	Category: Engineering Science Courses
Course Title: Programming for Problem Solving	Semester : Second
L-T-P : 0-0-4	Credit:2
Pre-Requisites:	

The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm to be implemented for the problem given.

Tutorial 1: Problem solving using computers:

Lab1: Familiarization with programming environment

Tutorial 2: Variable types and type conversions:

Lab 2: Simple computational problems using arithmetic expressions

Tutorial 3: Branching and logical expressions:

Lab 3: Problems involving if-then-else structures

Tutorial 4: Loops, while and for loops:

Lab 4: Iterative problems e.g., sum of series

Tutorial 5: 1D Arrays: searching, sorting:

Lab 5: 1D Array manipulation

Tutorial 6: 2D arrays and Strings

Lab 6: Matrix problems, String operations

Tutorial 7: Functions, call by value:

Lab 7: Simple functions

Tutorial 8 &9: Numerical methods (Root finding, numerical differentiation, numerical integration):

Lab 8 and 9: Programming for solving Numerical methods problems

Tutorial 10: Recursion, structure of recursive calls

Lab 10: Recursive functions

Tutorial 11: Pointers, structures and dynamic memory allocation

Lab 11: Pointers and structures

Tutorial 12: File handling:

Lab 12: File operations

Course Outcomes:

COs	CO Statement
CS 291.1	Students will be able to <i>define</i> the specifications like input and output relating to a particular problem and <i>describe</i> the algorithm that <i>solves</i> the problem.
CS 291.2	Students will be able to <i>construct</i> each of the modules of aprogram by <i>restating</i> the steps of the algorithm using functions in the framework of C language.
CS 291.3	Students will be able to <i>create</i> the program by using the functions and execute the program.
CS 291.4	Students will be able to <i>point out</i> the bugs if any, and modify the program to <i>solve</i> the problem.

	Basic Computation & Principles of Computer Programming(CS291)												
CO'S	PO'S												
CO'S	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CS 291.1	3	3	2	2	2	3	-	-	-	-	2	2	
CS 291.2	2	2	-	2		2	2	2		1	2	2	
CS 291.3	2	2	2	3	1	3	2	3	1	1	3	2	
CS 291.4	1	1	-	1	1	2	-	1	1	1	1	2	
Average	2	2	2	2	1.33	2.5	2	2	1	1	2	2	

Course Code : HM-HU201	Category: Humanities and Social Sciences including Management courses
Course Title : English	Semester : Second
L-T-P : 2-0-0	Credit:2
Pre-Requisites:	

Detailed contents

1. Vocabulary Building

- 1.1 The concept of Word Formation: Compounding, Backformation, Clipping, Blending.
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations: Acronyms

2. Basic Writing Skills

- 2.1 Sentence Structures & Types: Simple, Compound, Complex
- 2.2 Use of phrases and clauses in sentences: Transformation of sentences, active, passive, narration
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence: Arranging paragraphs & Sentences in logical order
- 2.5 Creating Cohesion: Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

3. Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

4. Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion

5. Writing Practices

- 5.1 Comprehension
- 5.2 Précis Writing
- 5.3 Essay Writing
- 5.4 Business Letter, Cover Letter & CV; E-mail

Learning Resources:

- (i) Kulbushan Kumar, R S Salaria, Effective Communication Skills, Khanna Publishing House, Delhi.
 - (ii) Practical English Usage. Michael Swan. OUP. 1995.
 - (iii) Remedial English Grammar. F.T. Wood. Macmillan.2007

- (iv) On Writing Well. William Zinsser. Harper Resource Book. 2001
- (v) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (vi) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- (vii) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press
- (viii) Universal English Prof. Prasad Kataria Publications, 2019.
- (ix) "Communication Skills for Professionals"-Nira Konar, Prentice Hall of India 2nd edition, New Delhi,

2011

(x) Gajendra Singh Chauhan, Smita Kashiramka and L. Thimmesha. Functional English. Cengage , 2019.

Course Outcomes:

Student will be able to:

	COURSE OUTCOMES (COs)					
CODE	DESCRIPTION					
HMHU201.CO 1	Revise the basic grammar of English language.					
HMHU 201.CO 2	Learn appropriate use of English language to enhance knowledge on building vocabulary and framing sentences.					
HMHU 201.CO 3	Learn and incorporate sensible style in Technical writing.					
HMHU201.CO 4	Acquire proficiency in English language for comprehensive excellence in reading, listening, writing and speaking.					

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	1	2	1	-	-	-	ı	-	1	3	-	2
CO2	-	2	-	1	-	1	-	-	2	3	-	2
CO3	-	2	-	1	-	1	1	2	1	3	-	2
CO4	-	2	-	1	-	1	1	1	2	3	1	2
Average	-	2	-	1	-	1	1	1.5	1.5	3	1	2

Course Code : HM-HU291	Category: Humanities and Social Sciences including Management courses
Course Title: Language Laboratory	Semester : Second
L-T-P : 0-0-2	Credit:1
Pre-Requisites:	·

- 1) Honing 'Listening Skill' and its sub skills through Language Lab Audio device; 3P
- 2) Honing 'Speaking Skill' and its sub skills 2P
- Helping them master Linguistic/Paralinguistic features (Pronunciation/Phonetics/
 Voice modulation/ Stress/ Intonation/ Pitch & Accent) of connected speech
- 4) Honing 'Conversation Skill' using Language Lab Audio -Visual input; Conversational Practice Sessions (Face to Face / via Telephone, Mobile phone &

	Role Play Mode)	2P
5)	Introducing 'Group Discussion' through audio -Visual input and acquainting them	
	with key strategies for success	2P
6)	G D Practice Sessions for helping them internalize basicPrinciples	
	(turn-taking, creative intervention, by using correct body language, courtesies &	
	other soft skills) of GD	4P
7)	Honing 'Reading Skills' and its sub skills using Visual / Graphics/	
	Diagrams /Chart Display/Technical/Non Technical Passages	
	Learning Global / Contextual / Inferential Comprehension;	2P
8)	Honing 'Writing Skill' and its sub skills by using	
	Language Lab Audio -Visual input; Practice Sessions	2P

Course Outcomes

Student will be able to:

COURSE OUTCOMES (COs)					
CODE	DESCRIPTION				
HMHU291.CO 1	Get introduced to professional application of English Language with				
	emphasis on listening and speaking skills through language lab aids.				
HMHU 291.CO 2	Practice sessions on pronunciation, intonation, voice modulation, stress,				
	pitch and accent and developing communicative skills with special focus				
	on Group Discussion.				
HMHU 291.CO 3	Master effective reading and writing style through Language Lab aids.				
HMHH201 CO 4	Ensure proficiency in reading, listening comprehension, technical writing				
HMHU291.CO 4	and in speaking.				

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	-	-	-	1	1	-	1	-	2	3	-	2
CO2	-	2	-	1	-	1	-	1	3	3	-	2
CO3	-	2	-	1	1	1	1	1	2	3	-	2
CO4	-	2	-	1	1	1	1	1	3	3	-	2
Average	-	2	-	1	1	1	1	1	2.5	3	-	2

3rd Semester

Name	e of the course	ELECTRIC CIRCUIT THEORY				
Cour	se Code: PC-EE 301	Semester: 3 rd				
Dura	tion: 6 months	Maximum Marks: 100				
Teacl	ning Scheme	Examination Scheme				
Theo	ry: 3 hrs/week	Mid Semester Exam: 15 M	arks			
Tutor	rial: 1 hr/week	Assignment & Quiz: 10 M	arks			
Pract	ical: 2 hrs/week	Attendance: 05 M	Marks			
Cred	it Points: 4+1	End Semester Exam: 70 M	arks			
	Object					
1.	To understand the structure and properties	s of different type of electrical	circuits, 1	networks		
	and sources.					
2.	To apply different mathematical tools & to		cal netwo	orks.		
3.	To apply circuit analysis techniques to sir	nplify electrical networks				
4.						
	2. Mathematics (BS-M-102, Bs-M202)					
Unit		Hrs	Marks			
1		3				
	and Nonlinear, Lumped and Distributed,					
	Sinusoidal, Square, Saw tooth signals					
2	Graph theory and Networks equations:	Concept of Tree, Branch,	4			
	Tree link, Incidence matrix, Tie-set matrix	x and loop currents, Cut set				
	matrix and node pair potentials. Duality, S					
3	Coupled circuits: Magnetic coupling, Po	olarity of coils, Polarity of	3			
	induced voltage, Concept of Self and Mut					
	of coupling, Modeling of coupled circuits,					
4	Laplace transforms: Impulse, Step & Si	inusoidal response of RL,	8			
	RC, and RLC circuits. Transient analysis					
	with and without initial conditions. Conce	ept of Convolution theorem				
	and its application. Solution of Problems v	-				
5	Fourier method of waveform analysis: 1		6			
	Transform (in continuous domain only). Application in circuit					
	analysis, Solution of Problems					
6	Network Theorems: Formulation of no	8				
	Network theorem: Superposition, Theveni					
		-				
	_ · · · · · · · · · · · · · · · · · · ·					
3. 4. 1. 2. Unit 1 2 3 4	To apply different mathematical tools & to To apply circuit analysis techniques to sin To solve problems of electrical circuits Pre-Re Basic Electrical Engineering (ES-EE-101) Mathematics (BS-M-102, Bs-M202) Content Introduction: Continuous & Discrete, Fix and Nonlinear, Lumped and Distributed, and systems. Independent & Dependent & Sinusoidal, Square, Saw tooth signals Graph theory and Networks equations: Tree link, Incidence matrix, Tie-set matrix matrix and node pair potentials. Duality, S Coupled circuits: Magnetic coupling, Poinduced voltage, Concept of Self and Mut of coupling, Modeling of coupled circuits, Laplace transforms: Impulse, Step & Si RC, and RLC circuits. Transient analysis with and without initial conditions. Conce and its application. Solution of Problems Fourier method of waveform analysis: I Transform (in continuous domain only analysis, Solution of Problems Network Theorems: Formulation of no transformation, Loop variable analysis, No.	requisite red & Time varying, Linear Passive and Active networks ources, Step, Ramp, Impulse, Concept of Tree, Branch, x and loop currents, Cut set colution of Problems olarity of coils, Polarity of cual inductance, Coefficient the Solution of problems. Inusoidal response of RL, of different electrical circuits rept of Convolution theorem with DC & AC sources. Fourier series and Fourier ty). Application in circuit etwork equations, Source ode variable analysis. In's, Norton's & Maximum orem and its application in	Hrs 3 4 8 6			

7	Two port networks analysis: Open circuit Impedance & Short circuit	4	
	Admittance parameter, Transmission parameters, Hybrid parameters		
	and their inter relations. Driving point impedance & Admittance.		
	Solution of Problems		
8	Filter Circuits: Analysis and synthesis of Low pass, High pass, Band	4	
	pass, Band reject, All pass filters (first and second order only) using		
	operational amplifier. Solution of Problems		

Text books:

- 1. Networks & Systems, Ashfaq Husain, Khanna Book Publishing, New Delhi
- 2. Networks and Systems, D. Roy Chowdhury, New Age International Publishers
- 3. Network Analysis and Synthesis, C.L. Wadhwa, New Age International Publishers
- 4. Circuit and Networks: Analysis and synthesis, A. Sudhakar & S.S. Palli4th edition. Tata Mc Graw Hill Education Pvt. Ltd.
- 5. Circuit theory, Dr. Abhijit Chakrabarty, Dhanpat Rai & Co Pvt. Ltd.

Reference books

- 1. Network Analysis, M.E. Valkenburg, Pearson Education .
- 2. Fundamental of Electric circuit theory, D. Chattopadhay & P.C. Rakshit, S. Chand
- 3. Engineering Circuit Analysis, W.H. Hyat, J.E. Kemmerly & S.M. Durbin, The Mc Graw Hill Company.
- 4. Problems and Solutions of Electric Circuit Analysis, R.K. Mehta & A.K. Mal, CBS, New Delhi

Course Outcome:

Course outcome	Statement						
codes							
PC-EE-301.1	Identify various signals, sources and systems.						
PC-EE-301.2	Explain different engineering problems by the application of various theorems and methods.						
PC-EE-301.3	Construct mathematical model of a given electric circuit using modern engineering tools and solve it using technique of domain transformation for practical related problems.						
PC-EE-301.4	Measure different network problems using graph theory concept						

PC-EE-301.5	Design the given electric circuit in terms of two port network,
	graph theory and filters and engage in life-long learning.

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	PO9	PO10	PO11	PO12
PC-EE-	3	3	3	2	2	1	-	-	-	-	-	1
301.1												
PC-EE-	3	3	3	2	2	1	-	-	-	-	-	1
301.2												
PC-EE-	3	3	3	2	2	1	-	-	-	-	-	1
301.3												
PC-EE-	3	3	3	2	2	1	-	-	-	-	-	1
301.4												
PC-EE-	3	3	3	2	2	1	-	-	-	-	-	1
301.5												
Average	3	3	3	2	2	1	-	-	-	-	-	1

NT	C.11	E1 4 ' C' '4 TI					
	e of the course	Electric Circuit Theory					
Cours	se Code:PC-EE391	Semester: 3 rd					
Durat	tion: 6 months	Maximum marks:100					
Teacl	ning Scheme	Examination scheme:					
Theo	ry: Nil	Continuous Internal Assessment:40					
Tutor	rial: Nil	External Assessment: 60					
Pract	ical: 2 hrs/week						
Credi	it Points:1						
	Laboratory Experiments:						
1.	Transient response of R-L and R-C networ						
2.	Transient response of R-L-C series and parallel circuit: simulation with software & hardware						
3.	Determination of Impedance (Z) and Admittance (Y) parameter of two-port network: simulation & hardware.						
4.	Frequency response of LP and HP filters: simulation & hardware.						
5.	Frequency response of BP and BR filters: simulation & hardware.						

6.	Generation of Periodic, Exponential, Sinusoidal, Damped Sinusoidal, Step, Impulse, Ramp signal using MATLAB in both discrete and analog form.
7.	Determination of Laplace transform and Inverse Laplace transform using MATLAB.
8.	Amplitude and Phase spectrum analysis of different signals using MATLAB.
9.	Verification of Network theorems using software & hardware

Course Outcome:

PCEE391.1	Remember electric circuits, signals and algorithms using mathematical tools.
PCEE391.2	Demonstrate transient analysis of electric circuits frequency response characteristics of Filter circuits
PCEE391.3	Analyse electric circuits, signals and algorithms using mathematical tools.
PCEE391.4	Construct circuits with appropriate instruments and safety precautions.

COs	PROC	PROGRAM OUTCOMES(POs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PCEE391.1	2	3	-	1	3	-	•	•	1	1	-	-
PCEE 392.2	2	1	2	1	3	-	-	•	1	1	-	-
PCEE391.3	2	3	-	1	3	-	-	-	1	1	-	-
PCEE 392.4	2	1	2	1	3	-	-	-	1	1	-	-
AVERAGE	2	2	2	1	3	-	-	-	1	1	-	-

Name	e of the course	ONICS				
Cours	se Code: PC-EE 302	Semester: 3 rd				
Durat	ion: 6 months	Maximum Marks: 10	00			
Teach	ning Scheme	Examination Scheme	e			
Theor	ry: 3 hrs/week	Mid Semester Exam:	15 Marks			
Tutor	ial: 0 hr/week	Assignment & Quiz:	10 Marks			
Practi	cal: 2 hrs/week	Attendance:	05 Marks			
Credi	t Points: 3+1	70 Marks				
Objec	etive:					
1.	To understand the structure and properties	s of different compone	nts of analog e	electronics.		
2.	To explain principle of operation of anal	og electronics compon	ents and circui	ts.		
3.	To understand the application of operation	nal amplifier				
4.	To solve problems of analog electronic	components and circuit	ts			
5.	To analyze amplifiers, oscillators and other	er analog electronic cir	cuits.			
Pre-R	Pre-Requisite					
1.	Physics (10+2)					
Unit	Content	Hrs	Marks			
1	Filters & Regulators: Review of half w	4				
	rectifier, Capacitor filters, · -section filter					
	and shunt voltage regulator, percentage re					
	and shunt voltage regulator, percentage re					

2	BJT circuits: Structure and I-V characteristics of a BJT; BJT	8
	as a switch. BJT as an amplifier: small-signal model, biasing	
	circuits, current mirror; common-emitter, common-base and	
	common-collector amplifiers; Small signal equivalent circuits,	
	high-frequency equivalent circuits	
3	MOSFET circuits: MOSFET structure and I-V	8
	characteristics. MOSFET as a switch. MOSFET as an	
	amplifier: small-signal model and biasing circuits, common-	
	source, common-gate and common-drain amplifiers; small	
	signal equivalent circuits - gain, input and output impedances,	
	trans-conductance, high frequency equivalent circuit.	
4	Feed back amplifier & Oscillators: Concept of Feed back,	5
	Negative & Positive feedback, Voltage/Current, Series/Shunt	
	feedback, Berkhausen criterion, Colpit, Hartley's, Phase shift,	
	Wien bridge, & Crystal oscillators.	
5	Operational amplifier: Ideal OPAMP, Differential amplifier,	5
	Constant current source (Current mirror etc), Level shifter,	
	CMRR, Open & closed loop circuits, importance of feedback	
	loop (positive & negative), inverting & non-inverting	
	amplifiers, Voltage follower/Buffer circuits.	
6	Application of Operational amplifiers: Adder, Integrator &	5
	Differentiator, Comparator, Schmitt Trigger, Instrumentation	
	Amplifier, Log & Antilog amplifier, Trans-conductance	
	multiplier, Precision rectifier, Voltage to current &Current to	
	voltage converter.	
7	Power amplifier: Class A, B, AB, C, Conversion efficiency	2
8	Multivibrator: Monostable, Bistable multivibrator, Monostable & Astable operation using 555 timer.	2
9	Special function circuits: VCO & PLL	2

Text books:

- 1. Malvino—Electronic Principles, 6/e, TMH
- 2. Nagrath, Electronics: Analog and Digital, PHI, 2004
- 3. Mottershed, Electronics Devices & Circuits, Wiley Eastern
- 4. Millman & Halkias Integrated Electronics, Tata McGraw Hill.
- 5. Gayakwad R.A -- OpAmps and Linear IC's, 4/e, Pearson-PHI
- 6. Franco—Design with Operational Amplifiers & Analog Integrated Circuits , 3/e,TMH
- 7. Coughlin and Drisscol Operational Amplifier and Linear Integrated Circuits Pearson Education Asia.
- 8. A.K. Maini, Analog Electronics, Khanna Publishing House, 2019
- 9. L.K. Maheswari, Analog Electronics, Laxmi Publications

Reference books

- 1. Nagchoudhuri, Microelectronic Devices, 1/e, Pearson Education, 2001
- 2. Natarajan, Microelectronics: Analysis & Design, 1/e 2005, TMH
- 3. Maheshwari and Anand, Analog Electronics, PHI
- 4. Boyle'stead, Nashelsky: & Kishore, Electronic Devices & Circuit theory, 1/e, PHI/Pearson.
- 5. Millman & Halkias: Basic Electronic Principles; TMH.
- 6. Tobey & Grame Operational Amplifier: Design and Applications, Mc Graw

Hill.

Course Outcome:

After completion of this course, the learners will be able to

- 1. describe analog electronic components and analog electronics circuits, filters, regulators
- 2. compute parameters and operating points of analog electronic circuits.
- 3. distinguish different types amplifier and different types oscillators based on application.
- 4. construct operational amplifier based circuits for different applications.

CO-PO Mapping:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	2	2	2	2	1	1	2	2	1	1	-	2
CO2	2	2	2	2	1	2	2	-	2	1	1	1
CO3	2	1	1	2	1	1	1	2	-	-	2	2
CO4	2	2	2	2	2	1	2	1	2	2	-	2

Name	e of the course	Analog electronic laboratory				
Cour	se Code:PC-EE392	Semester: 3rd				
Dura	tion: 6 months	Maximum marks:100				
Teacl	hing Scheme	Examination scheme:				
Theo	ry: Nil	Continuous Internal Assessment: 40				
Tutor	rial: Nil	External Assessment: 60				
Pract	ical: 2 hrs/week	Credit Points:1				
	Laboratory E	xperiments:				
1.	Study of ripple and regulation characterist	ics of full wave rectifier with and without				
	capacitor filter.					
2.	Study of Zener diode as voltage regulator.					
3.	Study of characteristics curves of B.J.T &	F.E.T.				
4.	Construction of a two-stage R-C coupled a	mplifier & study of it's gain & Bandwidth.				
5.	Study of class A, C & Push-Pull amplifiers	5.				
6.	Study of timer circuit using NE555 & conf	iguration for monostable & astable and				
	bistable multivibrator					
7.	Study of Switched Mode Power Supply &	construction of a linear voltage regulator using				
	regulator IC chip					
8.	Construction of a simple function generator	r using IC.				
9.	Realization of a V-to-I & I-to-V converter					
10.	Realization of a Phase Locked Loop using					
11.	Study of D.A.C & A.D.C.					

Course Outcome: After completion of this course, the learners will be able to

CO1: set up testing procedure and select proper instruments to evaluate performance characteristics of electronic circuit to analyze their operation different operating conditions.

CO2: Practice different types of wiring and instruments connections keeping in mind technical, safety issues.

CO3: Prepare professional quality textual and graphical presentations of laboratory data and Computational results, incorporating accepted data analysis.

SUBJECT CODE	COs	PROG	ROGRAM OUTCOMES (POs)										
0002		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PC-EE- 392	CO1	2	2	1	1	-	-	2	1	2	-	1	1
002	CO2	2	1	2	1	-	1	2	2	1	-	-	1
	CO3	2	2	1	2	1	-	3	1	2	-	1	1

Name	e of the course	ELECTRO MAGNETION	C FIELD T	ΓHEORY			
Cours	se Code: PC-EE 303	Semester: 3rd					
Durat	ion: 6 months	Maximum Marks: 100					
Teach	ning Scheme	Examination Scheme					
Theor	ry: 3 hrs/week	Mid Semester Exam: 15	Marks				
Tutor	ial: 0 hr/week	Assignment & Quiz: 10	Marks				
Practi	ical: 0 hrs/week	Attendance: 0	5 Marks				
Credi	t Points: 3	End Semester Exam: 70) Marks				
	Objective:						
1.	To understand the basic mathematical to	ols to deal with Electromag	gnetic field	Problem.			
2.	To understand properties and application	of Electric and magnetic fi	ield.				
3.	To analyze electromagnetic wave propaga	ation					
4.	To solve problem related to Electromagne	etic field.					
	Pre-Re	equisite					
1.	Basic Electrical Engineering (ES-EE-101	1)					
2.	Mathematics (BS-M-102, Bs-M202)						
3.	Physics (BS-PH 101)						
Unit	Content		Hrs	Marks			
1	Introduction: Co-ordinate systems and tra	ansformation, Cartesian	4				
	coordinates, Circular cylindrical	coordinates, Spherical					
	coordinates & their transformation. Diffe						
	volume in different coordinate systems. S	<u> </u>					

2	Introduction to Vector calculus: DEL operator, Gradient of a	4	
	scalar, Divergence of a vector & Divergence theorem, Curl of a	7	
	vector & Strokes theorem, Laplacian of a scalar, Classification of		
	vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems		
3	Electrostatic field: Coulomb's law, field intensity, Gauss's law,	8	
	Electric potential and Potential gradient, Relation between E and	O	
	V, an Electric dipole and flux lines. Energy density in		
	electrostatic field. Boundary conditions: Dielectric-dielectric,		
	Conductor -dielectric, Conductor-free space. Poisson's and		
	Laplace's equation, General procedure for solving Poisson's and		
4	Magneto static fields: Biot- savart law, Ampere's circuit law,	8	
-	Magnetic flux density, Magnetic static and Vector potential,	O	
	Forces due to magnetic field, Magnetic torque and moments,		
	Magnetisation in material, Magnetic boundary condition,		
	Inductor and Inductances, Magnetic energy, Force on magnetic		
	material. Solution of problems Magnetisation in material,		
	Magnetic boundary condition,		
	Inductor and Inductances, Magnetic energy, Force on magnetic		
	material. Solution of problems		
5	Electromagnetic fields: Faraday's law, Transformer and	6	
	motional emf, Displacement current, Maxwell's equations, Time		
	varying Potential, Time harmonic fields. Solution of problems		
6	Electromagnetic wave propagation: Wave equation, Wave	6	
	propagation in lossy dielectric, Plane waves in loss less dielectric,		
	Plane wave in free space, Plane wave in good conductor, Skin		
	effect, Skin depth, Power & Poynting vector, Reflection of a		
	plane wave at normal incidence, reflection of a plane wave at		
	oblique incidence, Polarisation. Solution of problems		
7	Transmission line: Concept of lump & distributed parameters,	4	
	Line parameters, Transmission line equation & solutions,		
	Physical significance of solutions, Propagation constants,		
	Characteristic impedance, Wavelength, Velocity of propagation.		
	Solution of problems		

Text books:

- 1. Elements of Electromagnetic, Mathew N.O. Sadiku, 4th edition, Oxford University press.
- 2. Engineering Electromagnetic, W.H. Hyat & J.A. Buck, 7th Edition, TMH
- 3. Theory and problems of Electromagnetic, Edminister, 2nd Edition, TMH
- 4. Electromagnetic field theory fundamentals, Guru & Hizroglu, 2nd edition, Cambridge University

Course Outcome:

Course Name: PC-EE-303

Course outcome codes	Statement									
PC-EE-303.1	To examine quantities from one coordinate system to another with the implementation of modern engineering tools.									

PC-EE-303.2	To apply different operators and theorems of filed theory in complex engineering problems.
PC-EE-303.3	To analyse problems related to different fields in vector forms and able to develop project and research in the area.
PC-EE-303.4	To formulate the concept of EM wave propagation and transmission lines to solve professional engineering related problems.

CO-PC) Map	ping:												
	PO	РО	PO	PO	РО	PO	РО	PO	PO	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
PC-EE- 303.1	3	2	2	2	3	1	2	-	-	1	-	2	3	2
PC-EE- 303.2	3	3	3	2	2	1	2	-	-	1	1	2	2	3
PC-EE- 303.3	3	3	3	3	2	1	2	-	2	2	2	3	3	3
PC-EE- 303.4	3	3	3	3	3	2	3	-	2	2	2	3	3	3
Avera ge	3	3	3	2	2	1	2	-	1	1	1	1	3	3

Name of the course	ENGINEERING MECHANICS					
Course Code: ES-ME 301	Semester: 3rd					
Duration: 6 months	Maximum Marks: 100					
Teaching Scheme	Examination Scheme					
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks					
Tutorial: 0 hr/week	Assignment & Quiz: 10 Marks					
Practical: 0 hrs/week	Attendance: 05 Marks					
Credit Points: 3	End Semester Exam: 70 Marks					
Objective:						
1. To understand the basic mathematical tools to	deal with the physical bodies.					
2. To learn different mathematical techniques to a	nalyze physical bodies.					
2. To learn analysis techniques of rigid bodies.						
2. To solve problem of general motion.						
Pre-Requisite						
1. Physics (BS-PH-101)						
2. Mathematics (BS-M102, BS-M202)						

Unit	Content	Hrs	Marks
1	Introduction to vectors and tensors and co-ordinate	5	
	systems		
	Introduction to vectors and tensors and coordinate systems;		
	Vector and tensor algebra; Indical notation; Symmetric and		
	anti-symmetric tensors; Eigenvalues and Principal axes.		
2	Three-dimensional Rotation	4	
	Three-dimensional rotation: Euler's theorem, Axis-angle		
	formulation and Euler angles; Coordinate transformation of		
	vectors and tensors.		
3	Kinematics of Rigid Body	6	
	Kinematics of rigid bodies: Dentition and motion of a rigid		
	body; Rigid bodies as coordinate systems; Angular velocity of		
	a rigid body, and its rate of change; Distinction between two-		
	and three dimensional rotational motion; Integration of angular		
	velocity to find orientation; Motion relative to a rotating rigid		
	body: Five term acceleration formula.		
4	Kinetics of Rigid Bodies	5	
'	Kinetics of rigid bodies: Angular momentum about a point;		
	Inertia tensor: Dentition and computation, Principal moments		
	and axes of inertia, Parallel and perpendicular axes theorems;		
	Mass moment of inertia of symmetrical bodies, cylinder,		
	sphere, cone etc., Area moment of inertia and Polar moment of		
	inertia, Forces and moments; Newton-Euler's laws of rigid		
	body motion.		
5	Free Body Diagram (1 hour)	1	
	Free body diagrams; Examples on modelling of typical		
	supports and joints and discussion on the kinematic and kinetic		
	constraints that they impose.		
6	General Motion	9	
	Examples and problems. General planar motions. General 3-D		
	motions. Free precession, Gyroscopes, Rolling coin.		
7	Bending Moment	5	
,	Transverse loading on beams, shear force and bending moment		
	in beams, analysis of cantilevers, simply supported beams and		
	overhanging beams, relationships between loading, shear force		
	and		
	bending moment, shear force and bending moment diagrams.		
8	Torsional Motion	2	
	Torsion of circular shafts, derivation of torsion equation, stress		
	_		
0	and deformation in circular and hollow shafts.	2	
9	Friction Consent of Eviction, Lawrence Coulomb friction, April of	3	
	Concept of Friction; Laws of Coulomb friction; Angle of		
	Repose; Coefficient of friction.		

Text books:

- 1. J. L. Meriam and L. G. Kraige, "Engineering Mechanics: Dynamics", Wiley, 2011
- 2. M. F. Beatty, "Principles of Engineering Mechanics", Springer Science & Business Media, 1986.
- 3. Manoj K. Harbola, "Engineering Mechanics", Cengage Learning India Pvt.

Ltd, 2018

- 4. D.S. Bedi & M.P. Poonia, "Engineering Mechanics", Khanna Publishing House, 2019
- 5. R.S. Khurmi, "Engineering Mechanics", S.Chand Publications
- 6. R.K. Bansal, "Engineering Mechanics", Laxmi Publications

Course Outcome:

Course outcome codes	Statement									
ES-ME 301.1	Explain the co-ordinate system, principle of three dimensional rotation, kinematics and kinetics of rigid bodies									
ES-ME 301.2	Elaborate the theory of general motion, bending moment, torsional motion and friction.									
ES-ME 301.3	Develop free body diagram of different arrangements.									
ES-ME 301.4	Solve problems with the application of theories and principle of motion, friction and rigid bodies.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	1	2	2	2	3
CO2	3	3	3	3	2	2	1	1	2	2	2	3
CO3	3	3	3	2	-	-	-	-	1	1	2	2
CO4	3	3	3	3	1	1	1	-	1	2	2	3
Average	3	3	3	3	1.67	1	2	1	1.5	2.33	2	2.75

Name of the course	MATHEMATICS-I	II			
Course Code: BS- M 301	Semester: 3rd				
Duration: 6 months		Maximum Marks: 100			
Teaching Scheme	Examination Schem	e			
Theory: 3 hrs/week	Mid Semester Exam:				
Tutorial: 0 hr/week	Assignment & Quiz:				
Practical: 0 hrs/week	Attendance:	05 Marks			
Credit Points: 3	End Semester Exam:	70 Marks			
Objective:					
1. To understand Probability theory require	d an Electrical Engineer	r to apply in pr	ofession.		
2. To understand numerical methods to s					
3. To understand basics of Z transform to	solve engineering prob	olems.			
Pre-Requisite					
1. Mathematics (10+2)		I			
Unit Content		Hrs	Marks		
1 Probability:					
Basic Probability Theory: Classical					
limitations. Axiomatic definition. Some	elementary deduction:				
i) $P(O)=0$, ii) $0 \le P(A) \le 1$, iii) $P(A')=1$	-P(A) etc. where the	1			
symbols have their usual meanings. Fre	quency interpretation				
of probability.					
Addition rule for 2 events (proof) & its	extension to more than				
2 events (statement only). Related pr		3			
probability & Independent events. Exte					
events (pair wise & mutual independe					
Rule. Examples. Baye's theorem (staten	· -				
problems.	iem omy) and refated				
problems.					
D 1 V 1 - 1 - 0 D 1 - 1 - 1 - 1 - 1 - 1 - 1	4: E4-4:				
Random Variable & Probability Distribu	*				
Definition of random variable. Continuo		2			
random variables. Probability density fur		Δ			
mass function for single variable only. Distribu					
and its properties (without proof). Examples. I					
Expectation & Variance, properties & example	Expectation & Variance, properties & examples.				
Some important discrete distributions: Binor	nial & Poisson				
distributions and related problems. Some impo	ortant continuous				
distributions: Uniform, Exponential, Normal d	2				
related problems. Determination of Mean &	Variance for				
Binomial, Poisson & Uniform distributions on					

	Numerical Methods: Approximation in numerical computation: Truncation and		
	rounding errors, Fixed and floating-point arithmetic, Propagation of errors.	4	
	Interpolation: Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation.	5	
	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms.	3	
3	Z transform: Sequence, Representation of sequence, Basic operations on sequences, Z-transforms, Properties of Z-transforms, Change of scale, Shifting property, Inverse Z-transform, Solution of difference equation, Region of convergence.	4	

Text books:

- 1. Lipschutz S., and Lipson M.L.: Probability (Schaum's Outline Series), TMH.
- 2. C.Xavier: C Language and Numerical Methods.
- 3. Dutta & Jana: Introductory Numerical Analysis.
- 4. J.B.Scarborough: Numerical Mathematical Analysis.
- 5. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).
- 6. Hwei P Hsu, "Signal and system", (Schaum's Outline Series), Mc Graw Hill education.

Reference books

- 1. Balagurusamy: Numerical Methods, Scitech.
- 2. R.S. Salaria: Numerical Methods, Khanna Publishing House.
- 3. S.S. Sashtry: Numerical Methods, PHI
- 4. Baburam: Numerical Methods, Pearson Education.
- 5. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.
- 6. Soumen Guha & Rajesh Srivastava: Numerical Methods, OUP.
- 7. Srimanta Pal: Numerical Methods, OUP.

Course Outcome:

	COURSE OUTCOMES (COs)					
CODE	DESCRIPTION					
BS-M 101.CO 1	Apply the concept and techniques to differential and integral calculus to					
DS-W 101.CO 1	determine curvature and evaluation of different types of improper integrals.					
BS-M 101.CO 2	Understand the domain of applications of mean value theorems to engineering					
DS-W 101.CO 2	problems.					
BS-M 101.CO 3	Learn different types of matrices, concept of rank, methods of matrix inversion					
DS-W 101.CO 3	and their applications.					
BS-M 101.CO 4	Understand linear spaces, its basis and dimension with corresponding					
D3-W1 101.CO 4	applications in the field of computer science.					

	Learn and apply the concept of eigen values, eigen vectors, diagonalization of
BS-M 101.CO 5	matrices and orthogonalization in inner product spaces for understanding
	physical and engineering problems.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	3	2	2	2	1	-	2	-	2	2
CO2	3	3	2	2	2	2	2	-	1	-	-	1
CO3	3	3	2	2	3	2	2	-	2	-	2	2
CO4	3	3	2	2	3	2	2	-	-	-	1	2
CO5	3	3	3	2	2	1	-	-	-	-	2	1
Average	3	3	2.4	2	2.4	1.8	1.75	-	1.67	-	1.75	1.6

Name	e of the course	Numerical Methods laboratory			
Cour	se Code: PC-CS 391	Semester: 3 rd			
Dura	tion: 6 months	Maximum marks:100			
Teac	hing Scheme	Examination scheme:			
Theo	ry: Nil	Continuous Internal Assessment:40			
Tutor	rial: Nil	External Assessment: 60			
Pract					
Credit Points:1					
	Laboratory E	xperiments:			
1.	Assignments on Newton forward /backward, Lagrange's interpolation.				
2.	Assignments on numerical integration using	ng Trapezoidal rule, Simpson's 1/3 rule,			
	Weddle's rule.				
3.	Assignments on numerical solution of a system of linear equations using Gauss				
	elimination and Gauss-Seidel iterations				
4.	. Assignments on numerical solution of Algebraic Equation by Regular-falsi and Newton				
	Raphson methods.				
5.	Assignments on ordinary differential equation: Euler's and Runga-Kutta methods.				
6.	Introduction to Software Packages: Matlab				

Course Outcome:

	COURSE OUTCOMES (COs)
CODE	DESCRIPTION
PC-CS391:CO1	Solve the problem of Interpolation, Numerical Integration, solution of algebraic and transcendental equation, Linear equation and ordinary Differential Equation.
PC-CS391:CO2	Find appropriate numerical methods to solve engineering problems.
PC-CS391:CO3	Use software package to solve numerical problems.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO 12
										10	11	
CO1	3	2	2	2	1	2	2	-	1	2	2	3
CO2	2	2	2	1	1	2	2	-	2	2	1	2
CO3	3	2	2	1	-	2	2	-	1	1	2	1
Average	2.67	2	2	1.33	1	2	2	-	1.33	1.67	1.67	2

	e of the course	BIOLOGY FOR ENGINEERS			
	se Code:BS- 301	Semester: 3rd			
Dura	tion: 6 months	Maximum Marks: 100			
TF		E : .: C.1			
	hing Scheme	Examination Scheme	M 1		
	ry: 3 hrs/week	Mid Semester Exam: 15			
	rial: 0 hr/week	Assignment & Quiz: 10 Attendance: 05			
	ical: 0 hrs/week it Points: 3	End Semester Exam: 70	Marks Marks		
Crea	it Points: 3	End Semester Exam: 70	IVIAIKS		
Ohie	ctive:				
1.	To introduce modern biology with an e	emphasis on evolution of	biology as	s a multi-	
	disciplinary field.				
2.	To make students aware of application	on of engineering princip	oles in bio	ology and	
	engineering robust solution inspired by bi			8,7	
Pre-H	Requisite	· · · · · · · · · · · · · · · · · · ·			
1.	NIL				
Unit	Content		Hrs	Marks	
	Introduction				
	Purpose: To convey that Biology is as				
1	discipline as Mathematics, Physics and C		2		
	fundamental differences between science and engineering by				
	drawing a comparison between eye and of				
	aircraft. Mention the most exciting as				
	independent scientific discipline. Why we				
	Discuss how biological observations of 1				
	major discoveries. Examples from Brown				
	of thermodynamics by referring to the				
	Robert Brown and Julius Mayor. These				
	the fundamental importance of observa	tions in any scientific			
	inquiry				
	Classification:				
	Purpose: To convey that classification pe		3		
	all about. The underlying criterion, su		3		
2	biochemical or ecological be highlighted.	•			
2	at phenomenological level. A comm				
	hierarchy Classification. Discuss class				
	cellularity- Unicellular or multicellular (b)				
	ultrastructureprokaryotes or eucaryotes. (c) energy and Carbon				
	utilization -Autotrophs, heterotrophs,				
	lithotropes (d) Ammonia excretion - aminotelic, uricotelic,				
	ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular				
	taxonomy- three major kingdoms of life				
	come under different category based or				
	organisms for the study of biology come				
	E.coli, S.cerevisiae, D. Melanogaster, C.	elegance, A. Inaliana,			
<u> </u>	M. musculus.				

3	Biomolecules Purpose: To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine. Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids.	4	
4	Macromolecular analysis: Purpose: To analyze biological processes at the reductionistic level. Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.	5	
5	Metabolism Purpose: The fundamental principles of energy transactions are the same in physical and biological world. Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergonic reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge.	4	
6	Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.	3	
7	Immunology Purpose: How does the immune system work? What are the molecular and cellular components and pathways that protect an organism from infectious agents or cancer? This comprehensive course answers these questions as it explores the cells and molecules of the immune system. Immunology- Self vs Non-self, pathogens, human immune system, antigen-antibody reactions.	5	
8	Information Transfer Purpose: The molecular basis of coding and decoding genetic information is universal. Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic	4	
	code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.		

9	Cancer biology Purpose: A basic understanding of cancer biology and treatment. The course is not designed for patients seeking treatment guidance - but it can help to understand how cancer develops and provides a	5	
	framework for understanding cancer diagnosis and treatment. Identification of the major types of cancer worldwide. Description		
	of how genes contribute to the risk and growth of cancer. List and description of the ten cellular hallmarks of cancer. Definition of metastasis, and identification of the major steps in the metastatic		
	process. Description of the role of imaging in the screening,		
	Techniques in bio physics		
10	Purpose: Biophysics is an interdisciplinary science that applies	3	
	approaches and methods traditionally used in physics to study		
	biological phenomena. The techniques including microscopy,		
	spectroscopy, electrophysiology, single-molecule methods and		
	molecular modeling		
	Stem cell Purposes Stem cells and derived an educts offen areast marries for	2	
11	Purpose: Stem cells and derived products offer great promise for new medical treatments. Learn about stem cell types, current and	<u> </u>	
	possible uses, ethical issues.		
	possible ases, emical issues.		

Text / References:

- N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.
- 2. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- 3. D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.
- 4. G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.
- 5. L. M. Prescott, J. P. Harley and C. A. Klein, "Microbiology", McGraw Hill Higher Education, 2005.
- 6. Lewis J. Kleinsmith. "Principles of cancer biology", Pearson, 2016

COURSE OUT	COMES (COs)
CODE	DESCRIPTION
BS301.CO 1	Describe evolution and Darwin concept.
BS301.CO 2	Identify DNA as a genetic material in the molecular basis of information transfer. Apply thermodynamic principles to biological systems. Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine
BS301.CO 3	Describe immunology and antigen antibody reactions. To know about infectious diseases and vaccine preparation.

	To know about the basic techniques of biophysics and biochemistry. To know
BS301.CO 4	about environment and biosafety processes. How to do drug designing.
	Application of biological principles of biology for engineering designs.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	1	2	1	2	-	2	-	-	1	-	-	2
CO2	2	2	2	2	-	3	-	-	1	-	-	3
CO3	1	3	1	3	-	2	-	-	2	-	-	2
CO4	2	2	1	3	-	3	-	-	1	-	-	3
CO5	1	2	2	2	-	2	-	-	2	-	-	2
Average	1.60	2.2	1.4	2.4	-	2.25	-	-	1.4	-	-	1.4

Name	e of the course	INDIAN CONSTITU	JTION					
	ourse Code: MC-EE 301 Semester: 3rd							
	tion: 6 months	Maximum Marks: 10	00					
Teacl	hing Scheme	Examination Scheme	e					
Theo	ry: 3 hrs/week	Mid Semester Exam:	15 Marks					
Tutor	rial: 0 hr/week	Assignment & Quiz:	10 Marks					
Practi	ical: 0 hrs/week	Attendance:						
Credi	t Points: 0	End Semester Exam:	70 Marks					
Objec	ctive:							
1.	To have basic knowledge about Indian C	Constitution.						
2.	To understand the structure and functioning	ng of union, state and le	ocal self-gover	nment.				
3.	To understand the structure, jurisdiction	and function of Indian	judiciary.					
Pre-R	Requisite							
1.	NIL							
Unit	Content		Hrs	Marks				
1	Indian Constitution:	5						
	Sources and constitutional history, Features: Citizenship,							
	Preamble, Fundamental Rights and	Duties, Directive						
	Principles of State Policy							

2	Union government and its administration: Structure of the Indian Union: Federalism, Centre- State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha. State government and its administration: Governor: Role and Position, CM and Council of ministers, State Secretariat: Organisation, Structure and Functions	10	
3	Supreme court: Organization of supreme court, procedure of the court, independence of the court, jurisdiction and power of supreme court. High court: Organization of high court, procedure of the court, independence of the court, jurisdiction and power of supreme court. Subordinate courts: constitutional provision, structure and jurisdiction. National legal services authority, Lok adalats, family courts, gram nyayalays. Public interest litigation (PIL): meaning of PIL, features of PIL, scope of PIL, principle of PIL, guidelines for admitting PIL	10	
4	Local Administration:	10	
1 -	District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: Zila Pachayat, Elected officials and their roles, CEO Zila Pachayat: Position and role, Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.		

Text books:

1. Indian polity, M, Laxmikanth, MC Graw Hill education, 5th Edition.

Reference books

1. DD Basu, "Introduction to the constitution of India", 21st Edition, Lexis Nexis Books Publication 1td, India

Course Outcome:

COURSE OUTCOMES (COs)							
CODE	DESCRIPTION						
MC EE301.CO 1	Understanding the significance of Preamble and have an insight into the history of the framing of constitution.						
MC EE301.CO 2	Understanding the structure and functioning of union, state and local self-government.						

MC EE301.CO 3	Understanding the structure, jurisdiction and function of Indian judiciary.
MC EE301.CO 4	Knowing about the basics of PIL and guideline for admission of PIL. Functioning of local administration starting from block to Municipal Corporation.

CO-PO Mapping:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	-	-	1	2	-	2	2	-	1	1	1	3
CO2	-	-	1	2	-	2	1	-	2	1	-	3
CO3	-	-	2	2	-	2	1	-	3	1	-	3
CO4	-	-	2	2	-	1	1	-	3	2	-	3
Average	-	-	1.5	2	-	1.75	1.25	-	2.25	1.25	1	3

4th Semester

Name	of the course ELECTRIC MACHINE-I							
Course	e Code: PC-EE-401	Semester: 4th						
Durati	on: 6 months	Maximum Marks: 100						
Teach	ing Scheme	Examination Scheme						
Theor	y: 3 hrs/week	Mid Semester Exam: 15	Marks					
Tutori	al: 0 hr/week	Assignment & Quiz: 10	Marks					
Praction	cal: hrs/week	Attendance: 05	Marks					
Credit	Points: 3	End Semester Exam: 70) Marks					
Object								
1.	To review the concept of magnetic fields and							
2.	To learn the principle of production of electron	omagnetic force and torque	e.					
3.	To learn the basic principle of operation of D							
4.	To learn the principle of operation and characteristics.							
5.	To learn the principle of operation, connection	ns and different tests on T	ransformers					
6.	To acquire problem solving skills to solve pro	oblems of DC machines ar	nd Transformer	rs				
Pre-Re	equisite							
1.	Basic Electrical Engineering (ES-EE-101)							
2.	Electric Circuit Theory (PC-EE-301)							
3.	Electromagnetic Field Theory (PC-EE-303)	_ _						
Unit	Content		Hrs	Marks				

1	Magnetic fields and magnetic circuits: Review of magnetic circuits - MMF, flux, reluctance, inductance; review of Ampere Law and Biot Savart Law; Visualization of magnetic fields produced by a bar magnet and a current carrying coil - through air and through a combination of iron and air; influence of highly permeable materials on the magnetic flux lines.	3
2	Electromagnetic force and torque: B-H curve of magnetic materials; flux-linkage vs current characteristic of magnetic circuits; linear and nonlinear magnetic circuits; energy stored in the magnetic circuit; force as a partial derivative of stored energy with respect to position of a moving element; torque as a partial derivative of stored energy with respect to angular position of a rotating element. Examples - galvanometer coil, relay contact, lifting magnet, rotating element with eccentricity or saliency	5
3	DC machines: Basic construction of a DC machine, magnetic structure - stator yoke, stator poles, pole-faces or shoes, air gap and armature core, visualization of magnetic field produced by the field winding excitation with armature winding open, air gap flux density distribution, flux per pole, induced EMF in an	8

	armature coil. Armature winding and commutation -		
	Elementary armature coil and commutator, lap and wave		
	windings, construction of commutator, linear commutation		
	Derivation of back EMF equation, armature MMF wave,		
	derivation of torque equation, armature reaction, air gap flux		
	density distribution with armature reaction.		
4	DC machine - motoring and generation:		
	Armature circuit equation for motoring and generation, Types		
	of field excitations - separately excited, shunt and series. Open		
	circuit characteristic of separately excited DC generator, back		
	EMF with armature reaction, voltage build-up in a shunt	_	
	generator, critical field resistance and critical speed. V-I	7	
	characteristics and torque-speed characteristics of separately		
	excited, shunt and series motors. Speed control through		
	armature voltage. Losses, load testing and back-to-back testing		
	of DC machines		
5	Transformers:		
	Principle, construction and operation of single-phase		
	transformers, equivalent circuit, phasor diagram, voltage		
	regulation, losses and efficiency Testing - open circuit and		
	short circuit tests, polarity test, back-to-back test, separation of		
	hysteresis and eddy current losses Three-phase transformer -		
	construction, types of connection and their comparative		
	features, Parallel operation of single-phase and three-phase	10	
	transformers, Autotransformers - construction, principle,	12	
	applications and comparison with two winding transformer,		
	Magnetizing current, effect of nonlinear B-H curve of		
	magnetic core material, harmonics in magnetization current,		
	Phase conversion - Scott connection, three-phase to six-phase		
	conversion, Tap-changing transformers - No-load and on-load		
	tap-changing of transformers, Three-winding transformers.		
	Cooling of transformers.		

Text books:

- 1. Electrical Machines-I, P.S. Bimbhra, Khanna Publishing House (AICTE)
- 2. Electrical Machinery, P.S. Bimbhra, 7th Edition, Khanna Publishers
- 3. Electric machines, D.P. Kothari & I.J Nagrath, 3rd Edition, Tata Mc Graw-Hill Publishing Company Limited
- 4. Electrical Machines, P.K. Mukherjee & S. Chakrabarty, 2nd edition, Dhanpat Rai Publication.

Reference books:

- 1. Electric Machinery & Transformers, Bhag S. Guru and H.R. Hiziroglu, 3rd Edition, Oxford University press.
- 2. Electrical Machines, R.K. Srivastava, Cengage Learning
- 3. Theory of Alternating Current Machinery, Alexander S Langsdorf, Tata Mc Graw Hill Edition
- 4. The performance and Design of Alternating Current Machines, M.G.Say, CBS Publishers & Distributors.
- 5. Electric Machinery & transformer, Irving L Koskow, 2nd Edition, Prentice Hall India

Course outcome codes	Statement
EE-401.1	Remember the effects of Electromechanical energy on Electrical and Magnetic circuits.
EE-401.2	Understand the working principle of DC Machines, transformers & induction machines.
EE-401.3	Solve numerical problems on DC Machines, transformers & induction machines.
EE-401.4	Analyse the different performance characteristics of on DC Machines, transformers & induction machines.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EE- 401.1	3	2	1	-	-	-	1	-	-	1	1	2
EE- 401.2	3	3	2	1	1	1	1	-	ı	1	2	1
EE- 401.3	3	3	3	2	1	-	2	-	1	2	1	1
EE- 401.4	3	3	2	1	3	-	2	-	1	2	-	-
Average	3	3	3	1	2	1	1	-	1	1	1	1

		DIGITAL ELECTRONICS					
		Semester: 4 th					
Durat	ion: 6 months	Maximum Marks: 100					
Teach	ning Scheme	Examination Scheme					
Theo		Mid Semester Exam: 1	5 Marks				
		Assignment & Quiz: 10					
Practi			5 Marks				
Credi	t Points: 3	End Semester Exam: 7	0 Marks				
01.1.	A						
Object 1.	To learn the fundamentals of Digital systems a	nd principle of operation	n of Logic fam	ilies			
2.	To learn the principle of operation of Combina		il of Logic fair	illes.			
3.	To learn the principle of operation of combina						
4.	To learn the principle of operation of A/D and						
5.	To learn the principle of operation of A/D and		ogrammable log	ric devices			
6.	To acquire problem solving skills to solve prob			sie de vices.			
	equisite	or a regional or a contra					
1.	Analog Electronics (PC-PC-EE-303)						
Unit	Content		Hrs	Marks			
1	Fundamentals of Digital Systems and logic	c families:					
	Digital signals, digital circuits, AND, OR,						
	and Exclusive-OR operations, Boolean alg						
	IC gates, number systems-binary, sig						
	hexadecimal number, binary arithmetic,						
	complements arithmetic, codes, error dete		7				
	codes, characteristics of digital ICs, digital						
	Schottky TTL and CMOS logic, interfacing	_					
		ing CiviOs and 11L,					
2	Tri-state logic.						
	Combinational Digital Circuits:	Sunctions V					
1	Standard representation for logic for	•					
	representation, simplification of Logic fun						
	minimization of logical functions. Don't ca		7				
	Multiplexer, De-Multiplexer/Decoders, A		/				
	BCD arithmetic, carry look ahead adder, s						
	elementary ALU design, popular MSI chip	s, digital					
	comparator, parity checker/generator, code	e converters, priority					
	encoders, decoders/drivers for display devi	ices, Q-M method of					
	function realization.						
3	Sequential circuits and systems:						
	A 1-bit memory, the circuit properties of	Bistable latch, the					
	clocked SR flip flop, J- K-T and D types fli						
	of flipflops, shift registers, applications						
	serial to parallel converter, parallel to ser	_					
	counter, sequence generator, ripple(Asyncle	_	7				
	synchronous counters, counters design using	*					
		O 1 1 1					
	counter IC's, asynchronous sequential cour	mers, applications of					

	counters.		
4	A/D and D/A Converters:		
	Digital to analog converters: weighted resistor/converter, R-2R		
	Ladder, D/A converter, specifications for D/A converters,		
	examples of D/A converter, 1Cs, sample and hold circuit,		
	analog to digital converters: quantization and encoding,		
	parallel comparator A/D converter, successive approximation	7	
	A/D converter, counting A/D converter, dual slope A/D		
	converter, A/D converter using voltage to frequency and		
	voltage to time conversion, specifications of A/D converters,		
	example of A/D converter ICs.		
5	Semiconductor memories and Programmable logic devices:		
	Memory organization and operation, expanding memory size,		
	classification and characteristics of memories, sequential		
	memory, read only memory (ROM), read and write	7	
	memory(RAM), content addressable memory (CAM), charge		
	de coupled device memory (CCD), commonly used memory		
	chips, ROM as a PLD, Programmable logic		
	array, Programmable array logic, complex Programmable logic		
	devices (CPLDS), Field Programmable Gate Array (FPGA).		

Text books:

- 1. Digital Principles & Application, 5th Edition, Leach & Malvino, Mc Graw Hill Company.
- 2. Modern Digital Electronics, 4th Edition, R.P. Jain. Tata Mc Graw Hill Company Limited
- 3. Fundamental of Digital Circuits, A. Anand Kumar, 4th Edition, PHI.
- 4. Digital Electronics, R. Anand, Khanna Publishing House (2018).

Reference books:

- 1. Digital Logic Design, Morries Mano, PHI.
- 2. Digital Integrated Electronics, H. Taub & D. Shilling, Mc Graw Hill Company.
- 3. Digital Electronics, James W. Bignell & Robert Donovan, Thomson Delman Learning.
- 4. Fundamental of logic Design, Charles H. Roth, Thomson Delman Learning.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Describe the function of different building blocks of digital electronics, semiconductor memories and programmable logic devices.
- 2. Explain the principle of operation of combinational and sequential digital circuits, A/D and D/A converter
- 3. Solve numerical problems of Boolean algebra, number system, combinational & sequential digital circuits and A/D and D/A converter.
- 4. Specify applications of combinational and sequential digital circuits.
- 5. Determine specifications of different digital circuits.

CO-PO MAPPING:

COs	PO1	PO2	PO3	PO4	РО	РО	РО	PO8	PO9	PO10	PO11	PO12
					5	6	7					
CO1	2	1	-	1	-	-	1	1	-	-	-	1
CO2	2	3	1	-	1	-	-	-	1	1	1	1
CO3	2	3	1	-	-	1	1	-	1	1	1	1
CO4	2	3	1	-	-	1	1	-	1	1	1	1
CO5	2	3	1	-	-	1	1	-	1	1	1	1
AVG	2	2.6	1	1	1	1	1	1	1	1	1	1

Name of the course	ELECTRICAL & ELECTRONICS MEASUREMENTS								
Course Code: PC-EE-403	Semester: 4th								
Duration: 6 months	Maximum Marks: 100								
Teaching Scheme	Examination Scheme								
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks								
Tutorial: 0hr/week	Assignment & Quiz: 10 Marks								
Practical: hrs/week	Attendance: 05 Marks								
Credit Points: 3	End Semester Exam: 70 Marks								
Objective:									
1. To learn methods of measurement, errors in	measurement and its classification.								
2. To learn the principle of operation of analo	g and digital meters.								
3. To learn the basic principle of operation of	instrument transformers.								
4. To learn the principle of operation of catho	le ray oscilloscope and different sensors and								
transducers.									
	ower, energy and different electrical parameters								
6. To acquire problem solving skills to solve problems on the topics studied.									
Pre-Requisite									
1. Basic Electrical Engineering (ES-EE-101)	Basic Electrical Engineering (ES-EE-101)								
2. Electric Circuit Theory (PC-EE-301)	Electric Circuit Theory (PC-EE-301)								
Unit Content	t Content Hrs Mark								

1	Measurements:	
1	· · Method of measurement, Measurement system, Classification	
	of	
	instruments, Definition of accuracy, Precision, Resolution, Speed of	
	response, Error in measurement, Classification of errors, loading	7
	effect due to shunt and series connected instruments.	'
	Analog meters:	
	· · · General features, Construction, Principle of operation and	
	torque	
	equation of Moving coil, Moving iron, Electrodynamometer,	
	Induction instruments · · · Principle of operation of the	
2	Instrument transformer:	
	· · Disadvantage of shunt and multipliers, Advantage of	
	Instrument	
	transformers, Principle of operation of Current & Potential	
	transformer, errors.	9
	Measurement of Power:	
	· · Principle of operation of Electrodynamic & Induction type	
	wattmeter, Wattmeter errors	
	Measurement of Energy:	
	· · Construction, theory and application of AC energy meter,	
3	Measurement of resistance:	
	· · Measurement of medium, low and high resistances, Megger	
	Potentiometer:	
	· · Principle of operation and application of Crompton's	8
	DC	
	potentiometer, Polar and Co-ordinate type AC potentiometer,	
	AC Bridges:	
	· · Measurement of Inductance, Capacitance and frequency by AC	
	bridges	
4	Cathode ray oscilloscope (CRO):	
	· · Measurement of voltage, current, frequency & phase by	
	oscilloscope. Frequency limitation of CRO. Sampling and storage	
	oscilloscope, Double beam CRO.	
	Electronic Instruments:	7
	· · Advantages of digital meter over analog meters, Digital	
	voltmeter,	
	Resolution and sensitivity of digital meters, Digital multimeter,	
	Digital frequency meter, Signal generator, Digital Storage	
	oscilloscope.	
	0. 77. 1	
5	Sensors & Transducers:	4
5	· · Introduction to sensors & Transducers, Strain gauge, LVDT,	+
	Temperature transducers, Flow measurement using magnetic flow	
	measurement.	

Text books:

1. A course in Electrical & Electronic Measurements & Instrumentation, A.K. Sawhney,

Dhanpat Rai & sons.

2. Electrical Measurement & Measuring Instruments, E.W. Golding & F.C. Wides, Wheeler

Publishing

3. Sensors & Transducers, D. Patranabis, PHI, 2nd edition.

Reference books:

- 1. Electronic Instruments, H.S. Kalsi, Tata Mc-Graw hill, 2nd Edition.
- 2. Digital Instrumentation, A.J. Bouwens, Tata Mc-Graw hill.
- 3. Modern Electronic instrumentation & Measuring instruments, A.D. Heltric & W.C. Copper,

Wheeler Publication

- 4. Instrument transducers, H.K.P. Neubert, Oxford University press.
- 5. All-in One Electronics Simplified, A.K. Maini, Khanna Book Publishing Co. (2018)

Course Outcome:

Course Name: EE-402

Course outcome codes	Statement
EE-402.1	Describe different measurement systems & types of analog meters
EE-402.2	Demonstrate different methods of power & resistance measurement
EE-402.3	Calculate the values of unknown electrical parameters using AC bridges & potentiometer
EE-402.4	Analyse different measurement techniques using digital meters.

COs	РО	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
EE- 402.1	3	3	2	1	1	1	1	-	-	1	-	2	3	2
EE- 402.2	3	3	2	2	1	2	2	-	-	1	1	2	2	3
EE- 402.3	3	3	3	2	2	2	2	-	2	2	2	3	3	3
EE-	3	3	3	3	3	3	3	-	3	-	3	3	3	3

402.4														
Averag	3	3	2	2	2	2	2	-	1	1	1	2	3	3
е														

After completion of this course, the learners will be able to

- 1. explain the terms accuracy, precision, resolution, speed of response, errors in measurement,
 - loading effect
- 2. describe methods of measurement of power, energy by instruments and resistance,
 - capacitance and inductance by bridges and potentiometer
- 3. explain the principle of operation of analog meters, instrument transformer, digital multimeter, digital voltmeter, digital frequency meter, signal generator, strain gauge, LVDT and temperature transducers
- 4. explain the different building block, principle of operation of oscilloscope and measurement techniques of voltage, current, frequency and phase by oscilloscope
- 5. solve numerical problems related to analog meters, instrument transformer, measurement of power, energy, resistance, inductance and capacitance
- 6. specify applications of analog and digital measuring instruments, sensors and transducers

Nama	of the course	CINEEDING					
		THERMAL POWER ENGINEERING					
	e Code:ES-EE-401	Semester: 4th					
Durat	ion: 6 months	Maximum Marks: 100					
	ing Scheme	Examination Scheme					
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks				
Tutor	ial: 0 hr/week	Assignment & Quiz: 10) Marks				
Practi	cal: hrs/week	Attendance: 0	5 Marks				
Credit	t Points: 3	End Semester Exam: 70	0 Marks				
Objec	tive:						
1.	To learn the principle of operation of different types of boilers and Turbines						
2.	To learn the principle of operation of IC eng	ines and Gas turbines					
6.	To acquire problem solving skills to solve pro	blems of boilers, turbine	es, IC engines an	nd Gas			
	turbines	,	,				
Pre-R	equisite						
1.	Mathematics (BS M102 & BS M201)						
Unit	Content		Hrs	Marks			
1	Boilers:						
	Water Tube & Fire Tube boilers, Circulating Principles, Forced						
	Circulation, Critical pressure, Superheaters, Reheaters,						
	1 1	12					
	attemperators, madeed draught, foreed draught and secondary an						
	_ · · · · · · · · · · · · · · · · · · ·						
	l *	yelone separator, Dust					

2	Turbines: Rotary Thermodynamic devices - Steam turbines & their classifications - Impulse & Reaction typeTurbines, Thermodynamics of compressible fluid-flow, equation and continuity - Isentropic flow throughnozzles, velocity diagram, Blade efficiency, optimum velocity ratio, multi-staging, velocity & pressurecompounding, losses in turbines, erosion of turbine blades, turbine governing, performance analysis ofturbine, Condensing system.	12
3	IC Engines: IC Engines - classification, Analysis of a standard cycle, fuel characteristic of SI & CI Engine, Combustion, Engine performance Automotive Engine exhaust emission and their control	6
4	Gas Turbines: Gas turbine Analysis - Regeneration - Reheating, Isentropic efficiency Combustion efficiency	5

Text books:

- 1. Engineering Thermodynamics, P.K. Nag, 6th Edition, Mc Graw Hill Education Pvt. Ltd
- 2. Power Plant Engineering, P K Nag, 4th Edition, Mc Graw Hill Education Pvt. Ltd
- 3. Thermal Engineering, P.S. Ballaney, 25th Edition, , Khanna publishers
- 4. Power Plant Engineering, Domkundwar, Arora, Dhanpat Rai & Co.

Reference books:

- 1. Thermodynamics, Cengel, 6th Edition, Tata Mc Graw-Hill Education.
- 2. Power Plant Technology ,M M Ei-Wakil 1st Edition, Tata McGraw Hill
- 3. Heat and Thermodynamics, M W Zemansky & R.H.Dittman, 8th Edition, McGraw Hill

Course Outcome:

Course Name: EE-402

Course outcome codes	Statement
EE-402.1	Describe the function of different components of boilers. Engines and turbines
EE-402.2	Explain the principle of operation & controlling the parameters of different types of boilers, turbines, IC engines and Gas turbines
EE-402.3	Solve numerical problems of boilers, turbines, IC engines and Gas turbines.
EE-402.4	Determine the performance & efficiency of boilers, engines and turbines

COs	РО	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
EE- 402.1	3	3	2	1	1	1	1	-	-	1	-	2	3	2
EE- 402.2	3	3	2	2	1	2	2	-	-	1	1	2	2	3
EE- 402.3	3	3	3	2	2	2	2	-	2	2	2	3	3	3
EE- 402.4	3	3	3	3	3	3	3	-	3	-	3	3	3	3
Averag e	3	3	2	2	2	2	2	-	1	1	1	2	3	3

Name	of the course	VALUES AND ETHICS	IN PROFESSION						
	e Code: HM-EE-401	Semester: 4th							
Durat	ion: 6 months	Maximum Marks: 100							
Teach	ning Scheme	Examination Scheme							
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks						
Tutor	ial: 0 hr/week	Assignment & Quiz: 10) Marks						
	cal: 0 hrs/week		5 Marks						
Credi	t Points: 3	End Semester Exam: 7	0 Marks						
Objec									
1.	To inculcate Human values to grow as a response								
2.	To instill Professional Ethics to maintain ethics	cal conduct and discharg	e professional d	uties.					
	equisite								
1.	Not applicable		11	3.6.1					
Unit	Content		Hrs	Marks					
	Human values:								
1	Morals, Values, and Ethics - Integrity -Tru								
1	Ethics - Service-Learning - Civic Virtue -		5						
	Living Peacefully - Caring - Sharing - Hone	•	3						
	Time - Co-operation - Commitment - Empath Spirituality- Character.	ly - Self-confidence -							
	Principles for harmony:								
	Truthfulness - Customs and Traditions -Valu	e Education - Human							
2	Dignity - Human Rights - Fundamental Dut	5							
	Harmony (I, We & Nature) - Gender Bias - E								
	- Salovey - Mayer Model - Emotional								
	Conscientiousness	e composition							
	Engineering ethics and social experimentati	on:							
	History of Ethics - Need of Engineering								
	Engineering Ethics- Profession and Profession	onalismSelf Interest -							
	Moral Autonomy - Utilitarianism - Virtue T	8							
3	Theories - Deontology- Types of Inquiry -								
	Gilligan's Argument - Heinz's Dilemma	•							
	Standard Experiments Learning from the								
	Managers - Consultants and Leaders - Balance								
	Role of Codes - Codes and Experimental Nati	ure of Engineering.							
	Engineers' responsibility towards sa	fety and risk for							
	sustainable development:	itory und fish for							
4	The concept of Safety - Safety and Risk	- Types of Risks -	5						
	Voluntary v/s Involuntary Risk - Consequence								
	-Accountability - Liability - Reversible Effec								
	of Risk - Delayed v/s Immediate Risk - Safe								
	Designing for Safety - Risk-Benefit Analysis-								
5	Engineers' duties and rights:								
	Concept of Duty - Professional Duties - Coll								
	for Achieving Collegiality - Senses of Loys								
	Controversy - Professional and Individual Rights - Confidential and								

	Proprietary Information - Conflict of Interest-Ethical egoism - Collective Bargaining - Confidentiality - Gifts and Bribes - Problem solving-Occupational Crimes- Industrial Espionage- Price Fixing-Whistle Blowing.	7	
(Global issues: Globalization and MNCs -Cross Culture Issues - Business Ethics - Media Ethics - Environmental Ethics - Endangering Lives - Bio Ethics - Computer Ethics - War Ethics - Research Ethics - Intellectual Property Rights.	5	

Text books:

1. Professional Ethics & Human Values, Premvir Kapoor, Khanna Publishing House, Delhi

(AICTE Recommended Textbook).

2. A text book on professional Ethics & Human values, R.S. Naagarazan, New Age international

Publishing.

- 3. Engineering Ethics, M. Govindarajan, S. Natarajan, V.S. Senthilkumar, Prentice Hall India.
- 4. Human value and professional Ethics, Jayshree Suresh, B.S. Raghvan, S. Chand Publishing

Reference books:

 Ethics in Science and Engineering, James G. Speight & Russel Foote, Wiley.

Course Outcome:

COURSE OUTCOMES (COs)										
CODE	DESCRIPTION									
HMEE 401.CO 1	Discuss different aspects of human values, ethics, engineers' responsibility and duties									
HMEE 401.CO 2	Explain different principles, different theories and laws of engineering ethics and social experimentation									
HMEE 401.CO 3	Identify different factors in the light of Engineers' responsibility towards safety and risk									
HMEE 401.CO 4 SurTech/ Departm	Instill Professional Ethics to maintain ethical conduct and discharge entofessionalchication in the conduct and discharge entofession in the conduct and din									

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	1	-	2	1	-	2	3	3	1	1	1	2
CO2	1	-	1	-	-	3	3	3	1	2	1	2
CO3	1	-	2	1	1	2	3	3	1	1	1	2
CO4	1	-	2	-	-	2	2	3	2	2	1	2
Average	1	-	1.75	1	1	2.25	2.75	3	1.25	1.5	1	2

Name	of the course	ENCE							
	e Code: MC-EE-401	Semester: 4th	3.1.02						
	ion: 6 months	Maximum Marks: 100							
Teach	ning Scheme								
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks						
Tutor	ial: 0 hr/week	Assignment & Quiz: 10) Marks						
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks						
Credit	t Points: 0	End Semester Exam: 7	'0 Marks						
Objec									
1.	To understand the environment and its relation								
2.	To be able to apply the fundamental knowle	dge of science and engin	neering to asses	S					
	environmental and health risk								
3.	To understand environmental laws and regu	lations to develop guide	lines and proced	dures for					
	health and safety issues								
4.	To acquire the skill to solve problem related	to environment and po	llution						
	equisite								
1.	Basic knowledge of science		T						
Unit	Content		Hrs	Marks					
	Basic ideas of environment, basic concep	ots, man, society &							
	environment, their interrelationship (1L)								
	Mathematics of population growth and a								
	Importance of population study in environ	•							
	definition of resource, types of resource	ce, renewable, non-							
	renewable, potentially renewable, effect of ex	xcessive use vis-à-vis	6						
1	population growth, Sustainable Development	(2L).							
	Materials balance: Steady state conservation	n system, steady state							
	system with non-conservative pollutants,	step function (1L).							
	Environmental degradation: Natural environmental Hazards like								
	Flood, earthquake, Landslide-cause	es, effects and							
	control/management; Anthropogenic degrad	lation like Acid rain-							
	cause, effects and control. Nature and scor								
	Science and Engineering (2L)								

	Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem- components types and function (1L). Structure and function of the following ecosystem: Forest		
2	ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web (2L) Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur] (1L) Biodiversity- types, importance, Endemic species, Biodiversity Hotspot, Threats to biodiversity, Conservation of biodiversity. (2L)	6	
	Atmospheric Composition: Troposphere, Stratosphere,		
3	Mesosphere, Thermosphere, Tropopause and Mesopause (IL) Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as albedo], Problems.(1L) Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget.(1L) Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L) Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L) Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)	11	

4	Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds. (2L) River/Lake/ground water pollution: River: DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river [deoxygenation, reaeration], COD, Oil, Greases, pH. (2L)	9	
4	Lake: Eutrophication [Definition, source and effect]. (1L) Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only)(1L) Standard and control: Waste water standard [BOD, COD, Oil, Grease], Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition. (2L) Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic (1L)		
5	Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol. (3L)	3	

Text books:

- 1. Environmental Studies, M.P. Poonia & S.C. Sharma, Khanna Publishing House
- 2. Introduction to Environmental Engineering and Science, G.M. Masters, Prentice-Hall of India Pvt. Ltd.,1991.

Reference books:

- 1. Environmental Chemistry, A. De, New Age International
- 2. Text Book for Environmental Studies, Erach Bharucha, UGC
- 3. Elements of Environmental Pollution Control, O.P. Gupta, Khanna Publishing House (AICTE Recommended Book).

Course Outcome:

Course Outcome:										
	COURSE OUTCOMES (COs)									
CODE	DESCRIPTION									
MG FF 401 GO 1	To understand the natural environment and its relationships with human									
MC-EE-401.CO 1	activities									
	To apply the fundamental knowledge of science and engineering to assess									
MC-EE-401.CO 2	environmental and health risk									
	environmental and hearth risk									
	To develop guidelines and procedures for health and safety issues obeying the									
MC-EE-401.CO 3										
	environmental laws and regulations									
MC-EE-401.CO 4	Acquire skills for scientific problem-solving related to air, water, noise& land									
WIC-EE-401.CO 4	pollution									
SurTech/ Departmen	nt of Electrical Engineering / Student Handbook / 2022									

	CO 10 Mapping.											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	2	3	2	3	2	3	3	1	1	2	2
CO2	3	3	2	2	3	3	3	2	1	-	2	3
CO3	2	2	3	3	2	2	3	3	2	3	3	3
CO4	3	2	3	3	1	3	3	3	1	-	2	2
Average	2.5	2.25	2.75	2.5	2.25	2.5	3	2.75	1.25	2.0	2.25	2.25

Name	e of the course	ELECTRIC MACHINE-I LABORATORY						
Cours	e Code:PC-EE491	Semester: 4 th						
Durat	ion: 6 months	Maximum marks:100						
T 1								
Teach	ing Scheme	Examination scheme:						
Theor	y: 0 hr/week	Continuous Internal Assessment:40						
Tutor	ial: 0 hr/week	External Assessment: 60						
Practi	cal: 2 hrs/week							
Credi	t Points:1							
	Laborator	ry Experiments:						
1.	Determination of the characteristics of a	separately excited DC generator.						
2.	Determination of the characteristics of	a DC motor						
3.	Study of methods of speed control of DO	C motor						
4.	Determination of the characteristics of a	a compound DC generator (short shunt)						
5.	Determination of speed of DC series mo	otor as a function of load torque.						
6.	Polarity test on a single phase transform	ner						
7.	Determination of equivalent circuit of a	single phase transformer and efficiency.						
8.	Study of different connections of three	phase transformer.						
9.	Study of Parallel operation of a single pl	hase transformers.						
and the same	ech/ Department of Electrical Engineering / Student Handbook / 2022 Determination of temperature rise and efficiency of the transformer. (Back to back test)							

Course Outcome:

PCEE491.1	Identify the components for perfroming experiment on Transformers and D.C.
	Machines.
PCEE491.2	Understand the corresponding circuit for perfroming experiment on
	Transformers and D.C. Machines.
PCEE491.3	Experiment on the constructed circuit based on Transformers and D.C.
	Machines.
PCEE491.4	Analyze the characteristics of Transformers, D.C. Machines

CO-PO MAPPING:

SUBJEC	COs	PROG	PROGRAM OUTCOMES(POs)										
T CODE		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
1		1	2	3	4	5	6	7	8	9	0	1	2
PCEE49	PCEE491.1	2	-	-	3	-	-	-	-	3	2	-	1
1	PCEE491.2	2	-	-	3	-	-	-	-	3	2	-	1
	PCEE491.3	2	-	-	3	-	-	-	-	3	2	-	1
Í	PCEE491.4	2	-	-	3	-	-	-	-	3	2	-	1
	AVERAG	2	0	0	3	0	0	0	0	3	2	0	1
	E												

Name	e of the course	DIGITAL ELECTRONICS LABORATORY					
Cours	e Code:PC-EE492	Semester: 4 th					
Durat	ion: 6 months	Maximum marks:100					
Teach	ning Scheme	Examination scheme:					
Theor	ry: 0 hr/week	Continuous Internal Assessment:40					
Tutor	ial: 0 hr/week	External Assessment: 60					
Practi	cal: 2 hrs/week						
Credi	t Points:1						
	Laboratory Exp	periments:					
1.	Realization of basic gates using Universal l	ogic gates.					
2.	Code conversion circuits- BCD to Excess-3	& vice-versa.					
3.	.4-bit parity generator & comparator circuits	S.					
4.	Construction of simple Decoder & Multiple	xer circuits using logic gates.					
5.	Design of combinational circuit for BCD to using multiplexer.	decimal conversion to drive 7-segment display					
6.	Construction of simple arithmetic circuits-A	dder, Subtractor.					
7.	Realization of RS-JK & D flip-flops using U	Iniversal logic gates.					
8.	Realization of Universal Register using JK f	lip-flops & logic gates.					
9.	Realization of Universal Register using mult	iplexer & flip-flops.					
10.	Construction of Adder circuit using Shift Re	gister & full Adder.					
11.	Realization of Asynchronous Up/Down cou	nter					
12.	Realization of Synchronous Up/Down coun	ter					
13.	Design of Sequential Counter with irregula	r sequences.					
14.	Realization of Ring counter & Johnson's cou	unter.					
15.	Familiarization with A/D and D/A circuits						

Course Outcome:

After completion of this course, the learners will be able to

- 1. Identify appropriate equipment and instruments for the experiment
- 2. Test the instruments for application to the experiment
- 3. Construct decoder, multiplexer, adder and subtractor circuits with appropriate instruments and precaution
- 4. Realize RS-JK and D flip flop, universal register with gates, multiplexer and flip-flops and asynchronous and synchronous up down counters
- 5. Validate the operation of code conversion circuit –BCD to Excess 3 & vice versa, 4 bit parity generator & comparator circuits,

CO-PO MAPPING:

COs	PO1	PO2	PO3	PO4	РО	РО	РО	PO8	PO9	PO10	PO11	PO12
					5	6	7					
CO1	2	3	_	1	-	-	1	2	2	-	-	1
CO2	2	3	1	-	1	-	-	2	2	1	1	1
CO3	2	3	1	-	-	1	1	2	2	1	1	1
CO4	2	3	1	-	-	1	1	2	2	1	1	1
CO5	2	3	1	-	-	1	1	2	2	1	1	1
AVG	2	3	1	1	1	1	1	2	2	1	1	1

Name	e of the course	ELECTRICAL & ELECTRONICS MEASUREMENT LABORATORY
Cours	ee Code:PC-EE493	Semester: 4 th
Durat	ion: 6 months	Maximum marks:100
Teach	ning Scheme	Examination scheme:
Theo	ry: 0 hr/week	Continuous Internal Assessment:40
Tutor	ial: 0 hr/week	External Assessment: 60
Practi	ical: 2 hrs/week	
Credi	t Points:1	
	Laboratory Ex	xperiments:
1.	Instrument workshop- Observe the construct	ion of PMMC, Dynamometer, Electrothermal and
	Rectifier type of instruments, Oscilloscope as	nd Digital multimeter.
2.	Calibrate moving iron and electrodynamomo	eter type ammeter/voltmeter by potentiometer.
3.	Calibrate dynamometer type wattmeter by po	otentiometer.
4.	Calibrate AC energy meter.	
5.	Measurement of resistance using Kelvin dou	ble bridge.
6.	Measurement of power using Instrument tra	ansformer.
7.	Measurement of power in Polyphase circuits	s.
8.	Measurement of frequency by Wien Bridge.	
9.	Measurement of Inductance by Anderson br	idge
10.	Measurement of capacitance by De Sauty Br	idge.
11.	Measurement of capacitance by Schering Bri	dge.

Course Outcome:

PC-EE- 493.1	To identify different measurement instruments.
PC-EE- 493.2	To illustrate the calibration of Potentiometer and AC Energy meter
PC-EE- 493.3	To explain the resistance and power measurement using Kelvin Double Bridge and Poly phase circuits
PC-EE- 493.4	To assess frequency, capacitance, inductance measurement different using AC Bridges

SUBJECT CODE	COs		PROGRAM OUTCOMES(POs)										
CODE		PO 1	P O 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
	PC-EE-493	3	3	3	1	2	3	1	1	1	-	-	1
PC-EE-493	PC-EE-493	3	3	2	1	2	2	1	-	-	-	-	1
	PC-EE-493.3	3	3	3	1	2	3	1	-	-	-	-	1
	PC-EE-493.4	3	3	3	1	2	3	1	ı	ı	1	-	1
	AVERAG E	3	3	3	1	2	3	1	-	-	-	-	1

Name	of the course	THERMAL POWER ENGINEEING LABORATORY					
Cours	e Code: ES-ME-491	Semester: 4 th					
Durat	ion: 6 months	Maximum marks:100					
Teach	ning Scheme	Examination scheme:					
Theor	y: 0 hr/week	Continuous Internal Assessment:40					
Tutor	ial: 0 hr/week	External Assessment: 60					
Practi	cal: 2 hrs/week						
Credi	t Points:1						
	Laboratory Ex	periments:					
1.	_	anchashire Boiler, Bahcock & Willcox Boiler, Cochran Boiler, 4S Diesel Engine, 4S Petrol Engine, 2S Petrol					
2.	Load Test on 4 Stroke Petrol Engine & Diesel	Engine by Electrical Load Box.					
3.	Load Test on 4 Stroke Diesel Engine by Rope	Brake Dynamometer.					
4.	Heat Balance on 4 Stroke Diesel Engine by Ro	ope Brake Dynamometer & by Electrical Load Box.					
5.	Valve Timing Diagram on 4S Diesel Engine M	Todel & 4S Petrol Engine Model					
6.	To find the Calorific Value of Diesel Fuel & C	oal by Bomb Calorimeter					
7.	To find the Flash Point & Fire Point of Petrol	& Diesel Fuel					
8.	To find the Cloud Point & Pour Point of Petrol	l & Diesel Fuel					
9.	To find Carbon Particle Percentage in Diesel	Engine Exhaust Smoke by Smokemeter and trace the					
	BHP Vs. % Carbon Curve						
10.	Measurement of the Quality of Steam - Entha	alpy & Dryness fraction					

Course Outcome:

ES-ME- 491.1	Identify appropriate instruments for the experimental setup with safety precautions.
ES-ME- 491.2	Describe different parts of Lanchashire Boiler, Bahcock & Willcox Boiler, Cochran Boiler, Vertical Tubular Boiler, Locomotive Boiler, 4S Diesel Engine, 4S Petrol Engine, 2S Petrol engine.
ES-ME- 491.3	Determine the performance & efficiency of 4 stroke petrol engine by electrical load box and diesel engine by electrical load box and rope brake dynamometer.
ES-ME- 491.4	Calculate calorific value, flash point, fire point, cloud point, pour point of fuel.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	3	1	1	-	2	-	1	2
CO2	3	1	1	2	3	2	3	-	2	1	2	2
CO3	3	2	3	2	2	2	3	1	3	1	2	1
CO4	2	2	3	3	2	2	3	1	3	1	2	1
Average	2.75	1.5	2	2	2.5	1.75	2.5	1	2.5	1	2.33	1.5

5th Semester

Semester-V

Name	e of the course EI	NE-II								
		mester: 5th	12 11							
)								
2 414		aximum Marks: 100								
Teacl	hing Scheme Ex									
Theor	ry: 3 hrs/week Mi	5 Marks								
Tutorial: 0hr/week Assignment & Quiz: 10 Marks										
Practical: hrs/week Attendance: 05 Marks										
Credi	t Points: 3 En	d Semester Exam: 7	0 Marks							
01.1										
Objec		7 1:								
1.	To understand the arrangement of windings of AC									
2. 3.	To understand the principle of production of pulsa			1. :						
4.	To understand the principle of operation and characteristic of the principle of operation and characteristic operation and character									
5.	To understand the principle of operation and char			1 macmines						
6.	To understand the principle of operation and characteristics of the principle of operation and characteristics.			cal devices						
7.	To solve problems of Induction machines, synchronic syn									
′.	devices.	onous muchines and	Special element	- Jimilioui						
Pre-F	Requisite									
1.	Basic Electrical Engineering (ES-EE-101)									
2.	Electric Circuit Theory (PC-EE-301)									
3.	Electromagnetic field theory (PC-EE-303)									
4.	Electric Machine-I (PC-EE-401)									
Unit	Content		Hrs	Marks						
1	Fundamentals of AC machine windings:									
	Physical arrangement of windings in stator and									
	slots for windings; single-turn coil - active portion									
	full-pitch coils, concentrated winding, distributed		_							
	axis,3D visualization of the above winding type	es, Air-gap MMF	5							
	distribution with fixed current through									
	winding-concentrated and distributed, Sinusc	oidally distributed								
	winding, winding distribution factor									
2	Pulsating and revolving magnetic fields:									
	Constant magnetic field, pulsating magnetic fi									
	current in windings with spatial displacement	_								
	produced by a single winding - fixed current and	<u> </u>	E							
	Pulsating fields produced by spatially displaced v		5							
	spatially shifted by 90 degrees, Addition of pu									
	fields, Three windings spatially shifted by 120 c									
	three-phase balanced currents), revolving magnetic	ic field.								
3	Induction Machines:) T. C1:								
	Construction, Types (squirrel cage and slip-rin		10							
	Characteristics, Starting and Maximum Torque.		10							
	Phasor Diagram, Losses and Efficiency. Effe									
	variation on torque speed characteristics (varia									
	stator resistances, stator voltage, frequency). Me									
	braking and speed control for induction motors. G	generator operation.								
	Self-excitation. Doubly-Fed Induction Machines.									
I	Single-phase induction motors:									

4	Constructional features, double revolving field theory, equivalent circuit, determination of parameters. Split-phase starting methods and applications	5
5	Synchronous machines: Constructional features, cylindrical rotor synchronous machine - generated EMF, equivalent circuit and phasor diagram, armature reaction, synchronous impedance, voltage regulation. Operating characteristics of synchronous machines, V-curves. Salient pole machine - two reaction theory, analysis of phasor diagram, power angle characteristics. Parallel operation of alternators - synchronization and load division.	10
6	Special Electromechanical devices: Principle and construction of switched Reluctance motor, Permanent magnet machines, Brushless DC machines, Hysteresis motor, Stepper motor, Tacho generators.	5

Text books:

- 1. Electrical Machines -II, P.S. Bimbhra, Khanna Book Publishing House.
- 2. Electrical Machinery, P.S. Bimbhra, Khanna Publishing House.
- 3. Electrical Machines, Nagrath & Kothary, TMH
- 4. Electrical Machines, P.K. Mukherjee and S. Chakravorti, Dhanpat Rai Publications.
- 5. Electrical Machines, Theory & Applications, M.N. Bandyopadhyay, PHI

Reference books:

- 1. Electric Machinery & Transformer, Bhag S. Guru and H.R. Hiziroglu, 3rd Edition, Oxford University press.
- 2. Electric Machinery & Transformes, Irving L. Kosow, PHI
- 3. Electric Machinery, A.E.Fitzgerald, Charles Kingsley, Jr. & Stephen D. Umans, 6th Edition, Tata McGraw Hill Edition.
- 4. Electrical Machines, R.K. Srivastava, Cengage Learning
- 5. Theory of Alternating Current Machinery, Alexander S Langsdorf, Tata Mc Graw Hill Edition
- 6. The performance and Design of Alternating Current Machines, M.G.Say, CBS publishers & distributors
- 7. Electric Machines, Charles A. Gross, CRC press.
- 8. Problems in Electrical Engineering, Parker smith, 9th Edition, CBS publishers & distributors.

Course Outcome:

Course outcome codes	Statement											
EE-501.1	To describe the concept of rotating magnetic fields.											
EE-501.2	To demonstrate the operation of AC & Fractional HP Machines.											
EE-501.3	To analyse performance characteristics of AC & Fractional HP Machines.											
EE-501.4	To solve numerical problems on AC & Fractional HP Machines.											

CO-PO Mapping:

Electrical Machines-II

COs	РО	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
EE- 501.1	3	3	3	2	1	1	1	1	1	1	1	3	3	2
EE- 501.2	3	3	3	2	1	1	1	1	1	1	1	3	3	2
501.3	3	3	3	2	1	1	1	1	1	1	1	3	3	2
EE- 501.4	2	2	2	3	3	3	3	1	2	2	1	2	1	3
Averag e	3	3	3	2	1	1	1	1	1	1	1	3	2	2

of the course			
		n	
uon: o monus	<u> </u>		
ning Schama	Evamination Schama		
		5 Marks	
i i onico. J	Lina Defficated Lizatifi. /	O IVICINS	
ctive:			
	on of Electricity from dif	ferent sources	
To understand the principle tariff calculation.			
To solve numerical problems on the topics stu	ıdied.		
Requisite			
Basic Electrical Engineering (ES-EE-101)			
Electric Circuit Theory (PC-EE-301)			
Electromagnetic field theory (PC-EE-303)			
Content		Hrs	Marks
Basic Concepts:			
Evolution of Power System and present day S	Scenario. Structure of		
power system: Bulk power grid and Micro Gr			
Generation of Electric Power:			
General layout of a typical coal fired power s	10		
	1 8		
	duction.		
	To find parameters and characteristics of over To find different parameters for the construct To determine the performance of transmission To understand the principle tariff calculation. To solve numerical problems on the topics statequisite Basic Electrical Engineering (ES-EE-101) Electric Circuit Theory (PC-EE-301) Electromagnetic field theory (PC-EE-303) Content Basic Concepts: Evolution of Power System and present day Spower system: Bulk power grid and Micro Gr Generation of Electric Power: General layout of a typical coal fired power spower station, Nuclear power station, their coprinciples, comparison of different methods Introduction to Solar & Wind energy system.	se Code: PC-EE-502 tion: 6 months Maximum Marks: 100 Ming Scheme Y: 3 hrs/week Mid Semester Exam: 1 Cal: hrs/week Assignment & Quiz: 1 Cal: hrs/week Attendance: To understand the basic principle of generation of Electricity from different parameters and characteristics of overhead transmission lines: To find different parameters for the construction of overhead transmismion lines. To understand the principle tariff calculation. To solve numerical problems on the topics studied. Requisite Basic Electrical Engineering (ES-EE-101) Electric Circuit Theory (PC-EE-301) Electromagnetic field theory (PC-EE-301) Electromagnetic field theory (PC-EE-303) Content Basic Concepts: Evolution of Power System and present day Scenario. Structure of power system: Bulk power grid and Micro Grid. Generation of Electric Power: General layout of a typical coal fired power station, Hydro electric power station, Nuclear power station, their components and working principles, comparison of different methods of power generation.	see Code: PC-EE-502 tion: 6 months Maximum Marks: 100 Ming Scheme y: 3 hrs/week Mid Semester Exam: 15 Marks Ial: 0hr/week Assignment & Quiz: 10 Marks Cal: hrs/week Assignment & Quiz: 10 Marks Cal: hrs/week Attendance: 05 Marks To ind Semester Exam: 70 Marks To understand the basic principle of generation of Electricity from different sources To find parameters and characteristics of overhead transmission lines and cables. To find different parameters for the construction of overhead transmission line To determine the performance of transmission lines. To understand the principle tariff calculation. To solve numerical problems on the topics studied. Requisite Basic Electrical Engineering (ES-EE-101) Electric Circuit Theory (PC-EE-301) Electromagnetic field theory (PC-EE-303) Content Hrs Basic Concepts: Evolution of Power System and present day Scenario. Structure of power system: Bulk power grid and Micro Grid. Generation of Electric Power: General layout of a typical coal fired power station, Hydro electric power station, Nuclear power station, their components and working principles, comparison of different methods of power generation. Introduction to Solar & Wind energy system.

	Overhead transmission line:	
2	Choice of frequency, Choice of voltage, Types of conductors, Inductance and Capacitance of a single phase and three phase symmetrical and unsymmetrical configurations. Bundle conductors. Transposition. Concept of GMD and GMR. Influence of earth on conductor capacitance. Overhead line construction:	12
	Line supports, Towers, Poles, Sag, Tension and Clearance, Effect of	
	Wind and Ice on Sag. Dampers. Corona: Principle of Corona formation, Critical disruptive voltage, Visual critical corona discharge potential, Corona loss, advantages & disadvantages of Corona. Methods of reduction of Corona.	
3	Insulators: Types, Voltage distribution across a suspension insulator string, String efficiency, Arching shield & rings, Methods of improving voltage distribution across Insulator strings, Electrical tests on line Insulators.	05
4	Cables: Types of cables, cable components, capacitance of single core & 3 core cables, dielectric stress, optimum cable thickness, grading, dielectric loss and loss angle.	04
5	Performance of lines: Short, medium (nominal, T) and long lines and their representation. A.B.C.D constants, Voltage regulation, Ferranti effect, Power equations and line compensation, Power Circle diagrams.	06
6	Tariff: Guiding principle of Tariff, different types of tariff.	03

Text book:

- 1. Electrical Power System, Subir Roy, Prentice Hall
- 2. Power Systems, A. Ambikapathy, Khanna Publishing House
- 3. Power System Engineering, Nagrath & Kothery, TMH
- 4. Elements of power system analysis, C.L. Wodhwa, New Age International.
- 5. Electrical Power System, Ashfaq Hussain, CBS Publishers & Distributors

Reference books

- 1. Electric Power transmission & Distribution, S.Sivanagaraju, S.Satyanarayana,, Pearson Education.
- 2. A Text book on Power system Engineering, Soni, Gupta, Bhatnagar & Chakrabarti, Dhanpat Rai & Co.
- 3. Electric Power distribution system Engineering, 2nd Edition, T. Gonen, CRC Press.
- 4. www.powermin.nic.in/acts notification/pdf/ier1956.pdf

Course Outcome:

Course outcome codes	Statement										
EE-502.1	To identify different power system components and its associated terms.										
EE-502.2	To explain the mechanical & electrical design of overhead transmission lines.										

EE-502.3	To illustrate the performance & phenomena of cables,										
	transmission lines.										
EE-502.4	To analyse different tariff structures										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EE- 502.1	3	3	2	1	1	1	1	-	-	1	-	2
EE- 502.2	3	3	2	2	1	2	2	-	-	1	1	2
EE- 502.3	3	3	3	3	2	2	2	-	3	2	2	3
EE- 502.4	3	3	3	2	3	3	3	-	2	-	3	3
Average	3	3	2	2	2	2	2	-	1	1	1	2

Name	e of the course	CONTROL SYSTEM					
	se Code: PC-EE-503	Semester: 5th					
	tion: 6 months	Maximum Marks: 100					
Teacl	ning Scheme	Examination Scheme					
Theor	y: 3 hrs./week	Mid Semester Exam: 1	5 Marks				
	ial: 0hr/week	Assignment & Quiz: 1	0 Marks				
	cal: hrs./week		05 Marks				
Credi	t Points: 3	End Semester Exam: 7	<u>'0 Marks</u>				
Objec							
1.	To find mathematical representation of LTI sy						
2.	To find time response of LTI systems of diffe						
3.	To find the frequency response of LTI system						
4.	To understand stability of different LTI systems	S.					
5.	To analyze LTIsystems with state variables.						
6.	To solve problems of mathematical modelling	g and stability of LTI sy	rstems				
	equisite						
1.	Basic Electrical Engineering (ES-EE-101)						
2.	Electric Circuit Theory (PC-EE-301)						
3.	Electromagnetic field theory (PC-EE-303)						
4.	Electric Machine-I (PC-EE-401)		Г	T			
Unit	Content		Hrs	Marks			
	Introduction to control system:						
1	Concept of feedback and Automatic						
1	feedback, Objectives of control system, Def		04				
	nonlinear systems, Elementary concepts						
	robustness. Types of control systems, S						
	regulators, examples offeedback control syste						
	concept. Pole and Zeroes of a transfer fu	inction. Propertiesof					
	Transfer function.						
	Mathematical modeling of dynamic systems						
	Translational systems, Rotational systems,						
2	Liquid level systems, Electrical analogy of S		00				
2	system. Block diagram representation of co	•	08				
	diagram algebra. Signal flow graph. Mason's	_					
	Control system components: Potentiometer, S						
	Position encoders. DC and ACtacho-generate						
	diagram level description of feedback of	•					
	positioncontrol, speed control of DC motors, liquid level control, voltage control of anAlter						
	Time domain analysis:	nawi.					
3	Time domain analysis of a standard secon	d order closed loon					
	system. Concept of undamped natural f						
	overshoot, rise time and settling time. Depend	08					
	performance parameters on natural frequency						
	Step and Impulse response of first and second						
	of Pole and Zeros on transient response. Stabi						
	Routh-Hurwitz criteria and applications.	ini, by pole location.					
	Error Analysis: Steady state errors in control	l systems due to sten					

	ramp and parabolic inputs. Concepts of system types and error		
	constants.		
	Stability Analysis:		
4	Root locus techniques, construction of Root Loci for simple systems.		
	Effects ofgain on the movement of Pole and Zeros.	10	
	Frequency domain analysis of linear system: Bode plots, Polar		
	plots, Nichols chart, Concept ofresonance frequency of peak		
	magnification. Nyquist criteria, measure of relative stability, phase		
	andgain margin. Determination of margins in Bode plot. Nichols		
	chart. M-circle and M-Contours inNichols chart.		
	Control System performance measure:		
5	Improvement of system performance through compensation.	05	
	Lead, Lag and Lead- lag compensation, PI, PD and PID control.		
	State variable Analysis:		
	Concepts of state variables. State space model. Diagonalization of		
6	State Matrix. Solution of state equations. Eigenvalues and Stability	10	
	Analysis. Concept of controllability and observability.		
	Pole-placement by state feedback.		
	Discrete-time systems. Difference Equations. State-space models of		
	linear discrete-time systems.		
	Stability of linear discrete-time systems.		

Text books:

- 1. Modern Control Engineering, K. Ogata, 4th Edition, Pearson Education
- 2. Control System Engineering, I. J. Nagrath & M. Gopal. New AgeInternational Publication.
- 3. Control System Engineering, D. Roy Choudhury, PHI
- 4. Control System, A. Ambikapathy, Khanna Publishing House
- 5. Automatic Control Systems, B.C. Kuo & F. Golnaraghi, 8th Edition, PHI

Reference books

- 1. Control Engineering Theory & Practice, Bandyopadhyaya, PHI
- 2. Control systems, K.R. Varmah, Mc Graw hill
- 3. Control System Engineering, Norman Nise, 5th Edition, John Wiley & Sons
- 4. Modern Control System, R.C. Dorf & R.H. Bishop, 11th Edition, PearsonEducation.
- 5. Control System Design, C. Goodwin Graham, F. Graebe F. Stefan, Salgado. E. Mario, PHI
- 6. Modeling & Control of dynamic system, Macia&Thaler, Thompson
- 7. Modern Control Technology Components & Systems, 3rd edition, C.T Kilian, Cengage Learning
- 8. Modern Control Engineering, Y. Singh & S. Janardhanan, Cengage Learning
- 9. Control System Engineering, R. Anandanatarajan& R. Ramesh Babu, ,SCITECH
- 10. Automatic Control system, A. William, Wolovich, Oxford

Course Outcome:

SL NO.	Statement
EE503.1	To describe control system components and mathematical modelling of dynamic system
EE503.2	To solve problems related to time domain analysis and error analysis
EE503.3	To explain stability of linear systems in time domain
EE503.4	To asses stability of linear systems in frequency domain
EE503.5	To design a control system having improved performance through different types of controllers

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
PC-EE- 503.1	3	3	2	2	2	-	-	-	-	-	-	2	3	2
PC-EE- 503.2	3	3	2	2	2	-	-	-	-	-	-	2	3	2
PC-EE- 503.3	3	3	2	2	2	-	-	-	-	-	-	2	3	2
PC-EE- 503.4	3	3	2	2	2	-	-	-	-	-	-	2	3	2
PC-EE- 503.5	3	3	2	2	2	-	-	-	-	-	-	2	3	2
Averag e	3	3	2	2	2	-	-	-	-	-	-	2	3	2

Name of the course	POWER ELECTRONICS					
Course Code: PC-EE-504	Semester: 5 th					
Duration: 6 months	Maximum Marks: 100					
Teaching Scheme	Examination Scheme					
Theory: 3 hrs./week	Mid Semester Exam: 15 Marks					
Tutorial: 0hr/week	Assignment & Quiz: 10 Marks					
Practical: hrs./week	Attendance: 05 Marks					
Credit Points: 3	End Semester Exam: 70 Marks					
SurTech/ Department of Electrical Engineering / Student Handbook / 2022 Objective:						

1.	To understand the functioning and characteristics of power switching	devices							
2.	To understand the runciple of operation of converters.	ucvices.							
3.	To understand different triggering circuits and techniques of commutation of SCR								
4.	To find external performance parameter of converters.								
5.	To analyze methods of voltage control, improvement of power factor and reduction of harmonics								
5.	To analyze methods of voltage control, improvement of power factor and reduction of harmonics of the converter								
6.	To solve numerical problems of converters								
	equisite								
1.	Electric Circuit Theory (PC-EE-301)								
2.	Analog Electronics (PC-PC-EE-303)								
3.	Electromagnetic field theory (PC-EE-303)								
	Digital Electronics (PC-EE-402)								
4.		II.us	Maules						
Unit	Content	Hrs	Marks						
1	Introduction: Concept of power electronics, application of power electronics, uncontrolled converters, advantages and disadvantages of power electronics converters, power electronics systems, power diodes, power transistors, power MOSFETS, IGBT and GTO.	04							
2	PNPN devices: Thyristors, brief description of members of Thyristor family with symbol, V-Icharacteristics and applications. Two transistor model of SCR, SCR turn on methods,switching characteristics, gate characteristics, ratings, SCR protection, series and paralleloperation, gate triggering circuits, different commutation techniques of SCR.	05							
	Phase controlled converters:								
3	Principle of operation of single phase and three phase half wave, half controlled, full controlled converters with R, R-L and RLE loads, effects of freewheeling diodes and source inductance on the performance of converters. External performance parameters of converters, techniques of power factor improvement, single phase and three phase dual converters	06							
	DC-DC converters:								
4	Principle of operation, control strategies, step up choppers, types of	05							
	choppers circuits based on quadrant of operation, performance parameters, multiphase choppers.								
5	Inverters: Definition, classification of inverters based on nature of input source, wave shape of outputvoltage, method of commutation & connections. Principle of operation of single phase andthree phase bridge inverter with R and R-L loads, performance parameters of inverters, methods of voltage control and harmonic reduction of inverters.	10							
	Resonant Pulse Converters:								
6	Introduction, Series Resonant inverter, Parallel Resonant inverter, Zero-Current Switching Resonant converters, Zero-Voltage Switching Resonant converter, Two quadrant Zero-Voltage Switching Resonant converter, Resonant DC link inverter.	05							
7	Applications:								
•	Speed control of AC and DC motors. HVDC transmission. Static circuit breaker, UPS,static VAR controller.	05							

Text books:

- 1. Power Electronics, M.H. Rashid,4th Edition, Pearson
- 2. Power Electronics, P.S. Bimbhra, Khanna Publishing House.
- 3. Power Electronics, V.R. Moorthi, Oxford.
- 4. Power Electronics, M.D. Singh and K.B. Khanchandani, Tata Mc Graw Hill.

Reference books

- 1. Modern Power Electronics & AC drives, B.K. Bose, Prentice Hall
- 2. Power Electronics, Mohan, Undeland & Riobbins, Wiley India
- 3. Element of power Electronics, Phillip T Krein, Oxford.
- 4. Power Electronics systems, J.P. Agarwal, Pearson Education.
- 5. Analysis of Thyristor power conditioned motor, S.K. Pillai, University Press.
- 6. Power Electronics, M.S. Jamal Asgha, PHI.
- 7. Power Electronics: Principles and applications, J.M. Jacob, Thomson

Course Outcome:

Course outcome codes	Statement
PC-EE-504.1	To state the characteristics of different power electronic switches along with their turn-on, turn-off, triggering and protection circuits.
PC-EE-504.2	To classify various phase controlled rectifiers.
PC-EE-504.3	To demonstrate working of phase controlled converters.
PC-EE-504.4	To explain the operation of AC voltage controller & cycloconverters.
PC-EE-504.5	To choose different power converters in commercial and industrial applications

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PC-EE 504.1	3	2	3	2	1	1	1	-	1	1	1	3
PC-EE 504.2	2	3	2	2	2	1	1	-	1	1	1	3
PC-EE 504.3	2	2	2	2	3	1	1	-	1	1	1	2
PC-EE 504.4	3	3	3	2	1	1	1	-	1	1	1	2
PC-EE 504.5 SurTech/ Do	2 epartm	2 ent of F	2 Electric	2 al Engi	2 neering	1 ; / Stude	3 ent Hai	- ndbook	1 / 2022	1	1	3

Average	2	2	2	2	2	1	1	0	1	1	1	3

Name	e of the course	ELECTRIC MACHINE-IILABORATORY					
Cours	se Code: PC-EE 591	Semester: 5 th					
Durat	ion: 6 months	Maximum marks:100					
Teach	ning Scheme	Examination scheme:					
	ry: 0 hr/week	Continuous Internal Assessment:40					
Tutor	ial: 0 hr/week	External Assessment: 60					
	ical: 2 hrs/week						
Credit	t Points:1						
_	Laboratory Exp						
1.		ge Induction Motor & their comparison [DOL, Auto					
_	transformer &Star-Delta]						
2.	Study of equivalent circuit of three phase Indu	uction motor by no load and blocked rotor					
	test.						
3.	Study of performance of wound rotor Induction						
4.	Study of performance of three phase squirrel-	cage Induction motor -determination of					
	iron-loss, friction &windage loss.						
5.		on motor by different methods & their comparison					
	[voltagecontrol & frequency control].						
6.	Speed control of 3 phase slip ring Induction m						
7.	Determination of regulation of Synchronous n	nachine by					
	a. Potier reactance method.						
	b. Synchronous Impedance method.						
8.	Determination of equivalent circuit paramete						
9.	Load test on single phase Induction motor to						
10.	To determine the direct axis resistance [Xd] &	quadrature reactance [Xq] of a 3 phase					
4.4	synchronous machine byslip test.						
11.	Load test on wound rotor Induction motor to						
12.	To make connection diagram to full pitch & fr						
12	Induction motor for6 poles & 4 pole operation						
13.	To study the performance of Induction genera	TOTE					
14.	Parallel operation of 3 phase Synchronous generators						
15.	V-curve of Synchronous motor						

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Reference book:

- 1. Laboratory experiments on Electrical Machines, C.K. Chanda, A. Chakrabarti, Dhanpat Rai & Co.
- 2. Laboratory manual for Electrical Machines, D.P. Kothari, B.S.Umre, I K International Publishing House Pvt. Ltd.

Course Outcome:

Course outcome codes	Statement
PC-EE 591.1	Identify appropriate equipment and instruments for the experiment.
PC-EE 591.2	Test the instrument for application to the experiment.
PC-EE 591.3	Construct circuits with appropriate instruments and safety precautions.
PC-EE 591.4	Validate different characteristics of single phase Induction motor, three phase Induction motor, Induction generator and synchronous motor, methods of speed control of Induction motors and parallel operation of the 3 phase Synchronous generator.

	РО	РО	РО	РО	PO5	РО	РО	РО	РО	PO1	PO1	PO1
	1	2	3	4		6	7	8	9	0	1	2
PC-EE	3	2	3	2	1	1	1	-	1	1	1	3
591.1												
PC-EE	2	3	2	2	2	1	1	-	1	1	1	3
591.2												
PC-EE	2	2	2	2	3	1	1	-	1	1	1	2
591.3												
PC-EE	3	3	3	2	1	1	1	-	1	1	1	2
591.4												
_					4 -							
Averag					1.7							
е	2.5	2.5	2.5	2	5	1	1	-	1	1	1	2.5

Name	of the course	POWER SYSTEM-I LABORATORY					
Cours	e Code: PC-EE 592	Semester: 5 th					
Durat	ion: 6 months	Maximum marks:100					
Teach	ing Scheme	Examination scheme:					
Theor	y: 0 hr/week	Continuous Internal Assessment:40					
Tutori	ial: 0 hr/week	External Assessment: 60					
Practi	cal: 2 hrs/week						
Credit	: Points:1						
	Laboratory Experiments:						
1.	Determination of the generalized constants A	.B, C, D of long transmission line and regulation of a					
	3-Φ transmission line model						
2.	Study of distribution system by network analy	zer.					
3.	Measurement of earth resistance by earth tes	iter.					
4.	Determination of dielectric strength of insulat	ing oil.					
5.	Determination of breakdown strength of solid	l insulating material					
6.	Determination of parameter of 3- Φ transmission line model by power circle diagram						
7.	Study of different types of insulator.						
8.	Study of active and reactive power control of alternator.						
9.	Study and analysis of an electrical transmission line circuit with the help of software						
10.	Determination of dielectric constant, tan delta, resistivity of transformer oil.						

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome:

PC-EE-	Demonstrate performance of transmission line and distribution line
592.1	
PC-EE-	Construct line support for a particular transmission line.
592.2	
PC-EE-	Evaluate different methods of active and reactive power control.
592.3	
PC-EE-	Solve the reliability of different components of transmission line and distribution line.
592.4	

SUBJECT	COs]	PROGE	RAM O	UTCO:	MES(P	Os)			
CODE		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PC-EE-592	PC-EE- 592.1	3	3	2	1	-	2	-	-	-	-	2	2
	PC-EE- 592.2	2	-	3	1	-	-	-	-	-	-	2	3
	PC-EE- 592.3	2	3	-	3	-	-	-	-	-	-	2	2
	PC-EE-592.4	2	3	-	3	-	-	-	-	-	-	2	2
	AVERAGE	2.25	2.25	1.25	2	-	0.5	-	-	-	-	2	2.25

Name	of the course	CONTROL SYSTEMLABORATORY						
Cours	se Code: PC-EE 593	Semester: 5 th						
Durat	ion: 6 months	Maximum marks:100						
Teach	ning Scheme	Examination scheme:						
Theor	ry: 0 hr/week	Continuous Internal Assessment:40						
Tutor	ial: 0 hr/week	External Assessment: 60						
Practi	ical: 2 hrs/week							
Credit	t Points:1							
	,							
	Laboratory Exp							
1.		cool box, MAT-Lab- simulink tool box & PSPICE						
2.		er & Second order system with unity feedback with						
	· ·	ystem specification, Time constant, % peak						
	overshoot, settling time etc. from theresponse							
3.	Simulation of Step response & Impulse respor	nse for type-0, type-1 & Type-2 system with unity						
	feedback usingMATLAB & PSPICE.							
4.	Determination of Root locus, Bode plot, Nyqu	ist plot using MATLAB control system tool box for a						
	givensystem &stability by determining control							
5.	Determination of PI, PD and PID controller act	ion of first order simulated process.						
	Balancia di santa da	and the state of t						
6.	Determination of approximate transfer function							
7.	•	percentage peak overshoot, gain margin, phase						
	margin withaddition of Lead, Lag, Lead-lag cor							
8.		obtaining closed step responses for gain setting						
	, -	mped responses. Determination of rise time and						
	,	y simulation. Determination of un-damped natural						
	frequency and damping ratio fromexperiment							
9.	, ,	ad-Lag compensation circuits for a given system						
10	using simulation.	avetore from Ctata Variable madel and vice vers						
10.		system from State Variable model and vice versa.						
11.		using State variable technique by simulation. Study						
		e for asingle input, two-output system in SV form by						
	simulation.							

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome:

PCEE593.1	Able to identify solutions related with basic fundamentals of MATLAB.
PCEE593.2	Able to find solutions of step and impulse responses for first order and second order system and also type 0, type 1, type 2 system in MATLAB and determine different parameters related with the responses.
PCEE593.3	Able to investigate the stability of a system both in time domain and frequency domain using Root Locus, Bode plot, Nyquist plot.
PCEE593.4	Able to design different types of controller and compensator using MATLAB toolbox

CO-PO Mapping:

COs		PROGRAM OUTCOMES(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
PCEE593.1	3	3	3	-	3	-	-	-	3	1	-	-		
PCEE593.2	3	3	3	-	3	-	-	-	3	1	-	-		
PCEE593.3	3	3	3	-	3	-	-	-	3	1	-	-		
PCEE593.4	3	3	3	-	3	-	-	-	3	1	-	-		
AVERAGE	3	3	3	-	3	-	-	-	3	1	-	-		

Name	e of the course	POWER ELECTRONICS LABORATORY						
Cours	se Code: PC-EE 594	Semester: 5 th						
Durat	tion: 6 months	Maximum marks:100						
Teach	ning Scheme	Examination scheme:						
	ry: 0 hr/week	Continuous Internal Assessment:40						
	ial: 0 hr/week	External Assessment: 60						
	ical: 2 hrs/week							
Credi	t Points:1							
	Т							
	Laboratory Ex	periments:						
1.	Study of the characteristics of an SCR.							
2.	Study of the characteristics of a Triac							
3.	Study of different triggering circuits of an SCI							
4.	Study of firing circuits suitable for triggering SCR in a single phase full controlled bridge.							
5.	Study of the operation of a single phase full of	controlled bridge converter with R and R-L load.						
6.	Study of performance of single phase half converters.	controlled symmetrical and asymmetrical bridge						
7.	Study of performance of step down chopper	with R and R-L load.						
8.	Study of performance of single phase contro (simulation)	olled converter with and without source inductance						
9.	Study of performance of step up and step do (simulation)	own chopper with MOSFET, IGBT and GTO as switch						
10.	Study of performance of single phase half co	ntrolled symmetrical and asymmetrical bridge						
	converter.(simulation)							
11.	Study of performance of three phase control	led converter with R & R-L load. (simulation)						
12.	Study of performance of PWM bridge inverte	er using MOSFET as switch with R and R-L load.						
13.	Study of Zero Voltage Switching Resonant	converter and Zero Current Switching Resonant						
	Converter andto plot its output waveforms.							
14.	Study the speed control of universal motor t	o plot speed v/s α						

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Reference book:

1. Power Electronics Laboratory: Theory, Practice and Organization, O.P.Arora, Om Prakash

Arora, Alpha science International.

Course outcome:

PCEE594.1	Analyse the response of any power electronics devices.
PCEE594.2	Troubleshoot the operation of a power electronics circuit.
PCEE594.3	Choose suitable power electronic devices for any given application.
PCEE594.4	Know how to control and convert output signal as per requirements
PCEE594.5	Develop any power electronics circuits as needed in operation

SUBJEC	COs	PRO	GRAM	OUTC	OMES	(POs)							
T CODE		РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1
		1	2	3	4	5	6	7	8	9	0	1	2
PCEE59	PCEE594.1	3	-	-	1	-	-	-	-	-	-	-	-
4	PCEE594.2	-	1	-	2	-	-	-	-	-	-	-	-
	PCEE594.3	2	1	-	2	-	-	-	-	1	-	-	-
	PCEE594.4	2	-	-	2	-	-	-	-	1	-	-	-
	PCEE594.5	2	1	-	2	-	-	-	-	-	-	-	-
	AVERAG	1.8	0.6	-	1.8	-	-	-	-	0.4	-	-	-
	E	ļ										<u> </u>	

Name	e of the course	DATA STRUCTURE	& ALGORIT	HM
		Semester: 5 th		
Dura	tion: 6 months	Maximum Marks: 100)	
- T		- · · · · · · · · · · · · · · · · · · ·		
		Examination Scheme	7.3.6.1	
		Mid Semester Exam: 1		
		Assignment & Quiz: 1		
		Attendance: (End Semester Exam: 7	05 Marks	
Crean	Folius. 5	Eliu Semestei Exam. /	U Marks	
Objec				
1.	To understand the basics of abstract data types.			
2.	To understand the principles of linear and nonli			
3.	To build an application using sorting and search			
	equisite	<u>8</u>		
1.	Programing for problem solving (ES-CS 201)			
2.	Mathematics (BS-M-102)			
3.	Mathematics (BS-M-202)			
Unit	Content		Hrs	Marks
<u> </u>	Introduction: Basic Terminologies: Elementary	Data Organizations.	1115	111111111
	Data Structure Operations: insertion, dele	• 1		
1	Analysis of an Algorithm, Asymptotic Notatio		10	
	off. Searching: Linear Search and Binary Sear	· ·		
	their complexity analysis.	ion roominguo sumu		
	Stacks and Queues: ADT Stack and its operation	ons: Algorithms and		
	their complexity analysis, Applications of S	_		
2	Conversion and evaluation - corresponding			
	complexity analysis. ADT queue, Types of Que		10	
	Circular Queue, Priority Queue; Operations			
	Oueues: Algorithms and their analysis.	71		
	Linked Lists: Singly linked lists: Represen	tation in memory,		
3	Algorithms of several operations: Traversing, S			
	into, Deletion from linked list; Linked represer		10	
	Queue, Header nodes, Doubly linked list: or			
	algorithmic analysis; Circular Linked Lists:			
	algorithms and the complexity analysis. T	•		
	Terminologies, Different types of Trees: Bina			
	Binary Tree, Binary Search Tree, AVL Tree;			
	each of the trees and their algorithms with co			
	Applications of Binary Trees. B Tree, B+			
	algorithms and analysis	,		
	Sorting and Hashing: Objective and properties	of different sorting		
4	algorithms: Selection Sort, Bubble Sort, Insert			
	Merge Sort, Heap Sort; Performance and Comp		10	
	methods, Hashing. Graph: BasicTerminologies	·		
	Graph search and traversal algorithms and comp			

Text books:

- 1. Data Structures and Program Design In C, 2/E by Robert L. Kruse, Bruce P. Leung. PHI
- 2. Data Structure & Algorithms Using C, R.S. Salaria, 5th Ed., Khanna Publishing House
- 3. Data Structures in C, Aaron M. Tenenbaum. Pearson.
- 4. Data Structure, S. Lipschutz.. Mc Graw Hill.

Reference books

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, MIT press
- 2. Expert Data Structures with C++, R.B Patel, Khanna Publishing House
- 3. Fundamentals of Data Structures of C, Ellis Horowitz, SartajSahni, Susan Andersonfreed, MIT press
- 4. Data Structures Using C, ReemaThareja. Oxford University press
- 5. Data Structure Using C, 2/e by A.K. Rath, A. K. Jagadev. SCITECH
- 6. Data Structures through C, YashwantKanetkar, BPB Publications.

Course Outcome:

After completion of this course, the learners will be able to CO1: Understand the basic data structures and their applications.

CO2: Apply Linear Data Structure that can be implemented using different data structures.

CO3: Analyze the different sorting and searching algorithms mentioned in the course, their implementation and performance analysis.

CO4: Construct and evaluate algorithms to solve a problem by choosing an appropriate data structure.

CO-PO Manning:

CO-1 O N	Tapping	<u> </u>													
				Dat	ta Struct	ure & A	lgorithn	า							
		PO'S													
CO'S															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2		3	-	2	1	-	2	-	3	3			
CO2	3	2	1	1	1	2	3	1	1	2	2	3			
CO3	3	2	2	2	1	2	3	3	3	3	2	2			
CO4	3	3	2	-	-	-	3	-	-	3	-	3			
Avg	3.00	2.25	1.67	2.00	1.00	2.00	2.50	2.00	2.00	2.67	2.33	2.75			

Name	e of the course	OBJECT ORIENTEI) PROGRAM	MING
Cours	se Code: OE-EE-501B	Semester: 5 th		
Dura	tion: 6 months	Maximum Marks: 10	0	
Teach	ning Scheme	Examination Scheme		
Theor	ry: 3 hrs./week	Mid Semester Exam: 1	5 Marks	
	ial: 0hr/week	Assignment & Quiz: 1		
	cal: hrs./week		05 Marks	
Credi	t Points: 3	End Semester Exam: 7	0 Marks	
Objec	tive:			
1.	To understand simple abstract data types			
2.	To understand features of object-oriented des	ign such as encapsulatio	n, polymorphis	sm,
	inheritance			
3.	To understand common object-oriented desig	n patterns		
4.	To design applications with an event-driven g	raphical user interface.		
Pre-R	equisite			
1.	Programing for problem solving (ES-CS 201)			
Unit	Content		Hrs	Marks
1	Abstract data types and their specification. H	Iow to implement an	08	
	ADT. Concrete state space, concrete invarian			
	Implementing operations, illustrated by the Te			
2	Features of object-oriented programming.		08	
	identity, polymorphism - but not inheritance.	1		
3	Inheritance in OO design. Design pattern	s. Introduction and	08	
	classification. The iterator pattern.			
	Model-view-controller pattern. Commands	as methods and as	08	
4	objects. Implementing OO language features.			
5	Generic types and collections GUIs. Graphic		08	
	Scale and Swing. The software development			

Text books:

- 1. Mastering Object-Oriented Programming Using C++, R.S. Salaria, Khanna Publishing House.
- 2. Object Oriented Modelling and Design, Rambaugh, James Michael, Blaha Prentice Hall India.
- 3. The complete reference-Java2, Patrick Naughton, Herbert Schildt, TMH
- 4. Core Java For Beginners, R.K. Das, VIKAS PUBLISHING
- 5. Java How to Program, Deitel and Deitel, 6th ED, Pearson

Reference books

- 1. Object Oriented System Development, Ali Bahrami, McGraw Hill.
- 2. Ivor Horton's Beginning Java 2 SDK Wrox
- 3. Programming With Java: A Primer, E. Balagurusamy 3rd Ed., TMH

Course Outcome:

CO1: Students able to **relate** and **understand** the basic Object Oriented concepts.

CO2: Students learn to solve problem statements by **applying** Object Oriented Programming concepts.

CO3: Students **categorize** the implementation of various features of object oriented programming according to real world problems.

CO4: Students able to assess the pros and cons of each feature of object oriented programming.

CO5: Students able to **design** different application based software tools. **SurTech/ Department of Electrical Engineering / Student Handbook / 2022**

	Object Oriented Programming														
co's		PO'S													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	3	3	_	_	3	_	2	3	_	3			
CO2	_	3	2	_	-	_	_	2	3	3	3	_			
CO3	3	3	3	3	3	2	_	-	2	_	_	3			
CO4	_	2	3	3	_	_	_	-	3	3	3	2			
CO5	2	2	3	_	3	2	2	2	3	3	1	_			
Average	2.67	2.60	2.80	3.00	3.00	2.00	2.50	2.00	2.60	3.00	2.33	2.67			

Name	e of the course	COMPUTER ORGA	NISATION					
	se Code: OE-EE-501C	Semester: 5 th						
Dura	tion: 6 months	Maximum Marks: 100						
	ning Scheme	Examination Scheme						
	y: 3 hrs./week	Mid Semester Exam: 1						
	ial: 0hr/week	Assignment & Quiz: 1						
	cal: hrs./week		05 Marks					
Credi	t Points: 3	End Semester Exam: 7	0 Marks					
Objec		1 1 1	•,					
1.	To understand the analysis and design of vario		cuits.					
2.	To understand how Computer Systems work of							
3.	To understand how I/O devices are being acce	ssed and its principles e	tc.					
	equisite							
1.	Programing for problem solving (ES-CS 201)							
2.	Digital Electronics (PC-EE 402)			1				
Unit	Content		Hrs	Marks				
1	Basic organization of the stored program con		08					
	sequence for execution of a program. Role of							
	compiler/assembler. Fetch, decode and execu							
	operator, operand, registers and storage,							
	Instruction sets and addressing modes. Com							
_	systems. Fixed and floating point representation							
2	Overflow and underflow. Design of adders - r		08					
	look ahead principles. Design of ALU. Fixed							
	Booth's algorithm. Fixed point division - l							
	restoring algorithms. Floating point - IEEE 75							
3	Memory unit design with special emphasis o		10					
	CPU-memory interfacing. Memory organizati							
	memory, memory hierarchy, associative men							
	Virtual memory. Data path design for read/wri	ite access.						

	Design of control unit - hardwired and microprogrammed control.	10	
4	Introduction to instruction pipelining. Introduction to RISC		
	architectures. RISC vs CISC architectures. I/O operations - Concept		
	of handshaking, Polled I/O, interrupt and DMA.		

Text books:

- 1. Computer System Architecture, Mano, M.M. PHI.
- 2. Computer Architecture & Organisation, Hayes J. P, McGraw Hill,
- 3. Computer Organisation & Design, Chaudhuri P. Pal, PHI,
- 4. Computer Organization & Architecture, Rajaraman, PHI

Reference books

- 1. Computer Architecture, BehroozParhami, Oxford University Press
- 2. Microprocessors and Microcontrollers, N. senthil Kumar, M. Saravanan, S. Jeevananthan OUP
- 3. Computer Organization & Architecture, P N BasuVikas Pub
- 4. Computer Organization & Architecture, B.Ram, Newage Publications
- 5. Computer Organisation, Hamacher, McGraw Hill,

Course Outcome:

CO1: analyze the designing process of combinational and sequential circuits

CO2: express arithmetic, logic and shift micro operations in symbolic form and their corresponding circuits at a register transfer level and apply it for the **design** and implementation of ALU.

CO3: identify the addressing modes used in macro instructions and develop micro code for typical instructions in symbolic form.

CO4: understand different input output devices and the control circuit.

	Computer Organization														
CO'S		PO'S													
	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	2	2	2	3	-	-	-	-	2	2			
CO2	2	2	-	2		2	2	2		1	2	2			
CO3	2	2	2	3	1	3	2	3	1	1	3	2			
CO4	1	1	-	1	1	2	-	1	1	1	1	2			
Avg	2.00	2.00	2.00	2.00	1.33	2.50	2.00	2.00	1.00	1.00	2.00	2.00			

Name of the course	HIGH VOLTAGE ENGINEERING
Course Code: PE-EE-501A	Semester: 5 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs./week	Mid Semester Exam: 15 Marks

Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks			
	cal: hrs./week		05 Marks			
Credi	t Points: 3	End Semester Exam: 7	'0 Marks			
Objec						
1.	To understand the breakdown phenomenon of					
2.	To understand the method of generation of his					
3.	To understand measurement techniques of hig					
4.	To understand the over voltage phenomenon a	and insulation coordinati	on in Electric p	ower		
5.	systems To understand different methods of high voltage testing.					
6.	To solve numerical problems of breakdown pl	henomena, generation ar	nd measurement	t of high		
0.	voltage and currents, over voltage phenomena			or mgn		
Pre-R	equisite	·····	3*			
1.	Electric Circuit Theory (PC-EE-301)					
2.	Electromagnetic field theory (PC-EE-303)					
3.	Electric Machine-I (PC-EE-401)					
4.	Electrical and Electronics measurement (PC-F	EE-403)				
Unit	Content	·	Hrs	Marks		
	Breakdown phenomena:					
	Breakdown of Gases: Mechanism of Breakdo	own of gases, Charge				
1	multiplication, Secondaryemission, Townso		10			
	Theory, Paschen's Law, Determination of	Minimumbreakdown				
	voltage, Breakdown in non-uniform field, l	Effect of polarity on				
	corona inceptionand break down voltage.	•				
	Partial Discharge: definition and development	t in solid dielectric.				
	Break Down of Solids: Intrinsic breakdow	vn, Electromechanical				
	break down, Thermalbreakdown, Streamer Br	eakdown.				
	Breakdown of Liquid: Intrinsic Break down	, Cavitation Theory,				
	Suspended particle Theory.					
	Breakdown in Vacuum: Non-metallic electron	n emission mechanism,				
	Clump mechanism,					
	Effect of pressure on breakdown voltage.					
	Generation of High Voltage and Currents					
	Generation of highDC and AC voltages: half					
2	Cockroft-Walton voltage multiplier circuit, l		08			
	Cascaded transformers, Series resonant circuit					
	Generation of Impulse voltages and currents:	•				
	shapes, Multistage impulse generators, ge					
	surges, generation of impulse currents, trip	pping and control of				
	impulse generators.					
	Measurement of High Voltage and Current					
3	Sphere gap, Uniform field spark gap, Ro	O 1				
	voltmeter, Generating voltmeter, Impulse	•	08			
	using voltage dividers, Measurement of Hi					
	currents. Cathode ray oscillographs for impu	Ise voltage and current				
	measurements.					

	Over voltage phenomenon and insulation coordination in	
4	Electric power systems:	
	Lightning Phenomena, Electrification of cloud, Development of	
	Lightning Stroke, lightning induced over voltage, direct stroke,	
	indirect stroke.	08
	Protection of Electrical Apparatus against over voltage, Lightning	
	Arrestors, Valve Type, Metal Oxide arresters, Expulsion type. Effect	
	of location of lightning arresters on protection of transformer.	
	Protection of substation, Ground wires.	
	Insulation Co-ordination, Basic Insulation level. Basic Impulse	
	level, Switching Impulse level. Volt time characteristics of	
	protective devices, Determination of Basic Impulse level of	
	substation equipment.	
	High Voltage Testing:	
5	Various standards for HV Testing of electrical apparatus, IS, IEC	
	standards, Testing of insulators andbushings, testing of isolators and	06
	circuit breakers, testing of cables, power transformers. High voltage	
	laboratory layout, indoor and outdoor laboratories, testingfacility	
	requirements, safety precautions in H. V. Labs.	

Text books:

- 1. High Voltage Engineering, C.L. Wadhawa, New Age International Publishers.
- 2. High Voltage Engineering, M.S. Naidu & V. Kamraju, Tata MC Graw Hill publication.

Reference books

- 1. High-Voltage Engineering: theory and practice, Mazen Abdel-Salam; Hussein Anis; Ahdab El-Morshedy; RoshdyRadwan, New York, N.Y.: Marcel Dekker, ©2000.
- 2. High Voltage Engineering, E. Kuffel, W.S. Zaengl, J. Kuffel, 2nd edition, Butterworth-Heinemann.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain breakdown phenomenon of gas, liquid and solid and vacuum
- 2. Suggest methods for generation and measurement of high voltage and currents.
- 3. Determine the basic insulation level of substation equipment.
- 4. Apply methods for protection of electrical apparatus against over voltage
- 5. Test insulators, bushings, isolators, circuit breakers, cables and power transformers.
- 6. Solve numerical problems of breakdown phenomena, generation and measurement of high voltage and currents, over voltage phenomena and high voltage testing.

<u> </u>	IUPPIIIB	•										
				C	ompute	r Organ	ization					
CO'S						P	O'S					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	2	-	-	-	-	2	2
CO2	2	2	-	2	-	2	2	2		1	2	2
CO3	2	2	2	3	1	2	2	2	1	1	2	2

CO4	1	1	-	1	1	2	-	2	1	1	1	2
CO5	2	2	-	2	-	2	2	2		1	1	2
CO6	2	2	2	2	2	2	2	2	1	1	1	2
Avg	2.00	2.00	2.00	2.00	1.50	2.00	2.00	2.00	1.00	1.00	1.50	2.00

NI		ANTED DI ANTE ENIC	CINEEDING	
		OWER PLANT ENC mester: 5 th	JINEERING	
		mester: 5 aximum Marks: 100	<u> </u>	
Dura	tion, o months	axiiiiuiii waa ks. 100		
Teach	ning Scheme Ex	amination Scheme		
		d Semester Exam: 1	5 Marks	
Tutori	ial: 0hr/week As	signment & Quiz: 10) Marks	
			5 Marks	
Credit	t Points: 3 En	d Semester Exam: 7	0 Marks	
Objec				
1.	To understand methods of selection of power plan			
2.	To understand the principle of operation different		S.	
3.	Tounderstand methods of site selection of differen			
4.	To understand the cause of pollution and its remed			
5.	To understand methods of cooling of generators a		_	
6.	To solve numerical problems of load estimation, e	economics of power	plants.	
	equisite			
1.	Electric Circuit Theory (PC-EE-301)			
2.	Electromagnetic field theory (PC-EE-303)			
3.	Electric Machine-I (PC-EE-401)	0.2)		
4.	Electrical and Electronics measurement (PC-EE-4	03)	TT	3.5
Unit	Content		Hrs	Marks
	Introduction:	241 1		
1	Power and energy, sources of energy, review of		00	
1		and combustion	08	
	calculations.Load estimation, load curves, various involved in power plantcalculations. Effect of			
	power plant operation, Selection of power plant.	variable load on		
	Power plant operation, Selection of power plant. Power plant economics and selection:			
	Effect of plant type on costs, rates, fixed elements	s energy elements		
	customer elements andinvestor's profit; d			
	replacement, theory of rates. Economics of plan			
	considerations in plant selection.	discretion, onler		
	Steam power plant:			
	General layout of steam power plant, Power plan	t boilers including		
2	critical and supercritical boilers. Fluidized bed		08	
	mountings and accessories, Different systemssuc			
	system, pulverizers and coal burners, combustion			
	handling system, Dust collection system, Fee			
	and cooling towers and cooling			
	auxiliary systems such asgoverning, feed heating	<u> </u>		
	heating and gland leakage. Operation andmaint			
	power plant, heat balance and efficiency, Site			
	steampower plant.			
	Diesel power plant:			

3	General layout, Components of Diesel power plant, Performance of	
	diesel power plant, fuelsystem, lubrication system, air intake and	
	admission system, supercharging system, exhaustsystem, diesel	
	plant operation and efficiency, heat balance, Site selection of diesel	08
	powerplant, Comparative study of diesel power plant with	
	steampower plant.	
	Gas turbine power plant:	
	Layout of gas turbine power plant, Elements of gas turbine power	
	plants, Gas turbine fuels, cogeneration, auxiliary systems such as	
	fuel, controls and lubrication, operation andmaintenance, Combined	
	cycle power plants, Site selection of gas turbine power plant.	
	Nuclear power plant:	
4	Principles of nuclear energy, Lay out of nuclear power plant, Basic	
	components of nuclear reactions, nuclear power station, Nuclear	
	waste disposal, Site selection of nuclear power plants.	
	Hydro electric station:	10
	Hydrology, Principles of working, applications, site selection,	
	classification and arrangements, hydro-electric plants, run off size of	
	plant and choice of units, operation and maintenance, hydro systems,	
	interconnected systems.	
	Non Conventional Power Plants: Introduction to non-conventional	
	power plants (Solar, wind, geothermal, tidal)etc. Electrical system:	
5	Generators and their cooling, transformers and their	
	cooling.Instrumentation Purpose, classification, selection and	06
	application, recorders and their use, listing of various control	
	rooms. Pollution due to power generation and its remedy	
	100ms.1 onution due to power generation and its remedy	

Text books:

- 1. Power Plant Engineering, P.K. Nag, McGraw Hill.
- 2. Power Plant Engineering, F.T. Morse, Affiliated East-West Press Pvt. Ltd.
- 3. Power Plant Technology El-Vakil, McGraw Hill.

Reference books

- 1. Steam & Gas Turbines & Power Plant Engineering by R.Yadav, Central Pub.House.
- 2. An introduction to thermal power plant engineering and operation, P.K.Das and A.K. Das, Notion press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain the principle of operation of Steam, Hydroelectric, Diesel, Gas turbine, Nuclear power and non-conventional power plant.
- 2. Describe the methods of maintenance of Steam, Gas and Hydroelectric power plants
- 3. Identify the cause of pollution for power generation and its remedy.
- 4. Suggest location to set up Steam, Hydroelectric, Diesel, Gas turbine and Nuclear power plant.
- 5. Compare Steam, Hydroelectric, Diesel, Gas turbine, Nuclear power and non-conventional power plant.
- 6. Solve numerical problems of load estimation and economics of power plants.

CO-PO N	napping	•										
				C	ompute	r Organ	iization					
						D	0,0					
0020						P	O'S					
CO'S	DO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	PO1	PO2	PU3	PU4	PU3	P00	POT	100	PO9	POIU	POII	PO12
CO1	3	3	2	2	2	2	_	_	_	_	2	2
001			_	_	_	_					_	_
CO2	2	2	-	2	-	2	2	2		1	2	2
CO3	2	2	2	3	1	2	2	2	1	1	2	2
CO4	1	1	-	1	1	2	-	2	1	1	1	2
		-		2		2	2	2			-	
CO5	2	2	-	2	-	2	2	2		1	1	2
006	2	2	2	2	2	2	2	2	1	1	1	2
CO6	4	4	4	4	4		4	4	1	1	1	4
Avg	2.00	2.00	2.00	2.00	1.50	2.00	2.00	2.00	1.00	1.00	1.50	2.00
1108	2.00	2.00	2.00	2.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	2.00
8	_,,,,									_,,,,		

Name	e of the course	RENEWABLE & NO ENERGY	N CONVENT	TIONAL		
Cours		Semester: 5 th				
		Maximum Marks: 10	0			
		Examination Scheme				
		Mid Semester Exam: 1				
	torial: 0hr/week Assignment & Quiz: 10 Marks					
Practi	cal: hrs./week	Attendance: 05 Marks				
Credit	t Points: 3	End Semester Exam: 70 Marks				
Objec	tive:					
1.	To understand the difference between Renewal	ble and non-renewable	energy sources			
2.	To understand methods of conversion of solar energy and wind energy to other form of energy.					
3.	Tounderstand methods harnessing energy from Biomass, Geothermal and ocean					
4.	To understand the principle of operation of Ma	igneto Hydrodynamic p	ower generatio	n:		
5.	To understand the principle and operation of fu	iel cell.				
6.	To solve numerical problems of Renewable an	d non-renewable energy	sources			
Pre-R	equisite					
1.	Electric Circuit Theory (PC-EE-301)					
2.	Electromagnetic field theory (PC-EE-303)					
3.	Electric Machine-I (PC-EE-401)					
4.	Electrical and Electronics measurement (PC-E	E-403)				
Unit	Content	,	Hrs	Marks		
	Introduction to Energy sources:					
	Renewable and non-renewable energy sources	s, energy consumption				
1	as a measure of Nation's development; strat		03			
	future energy requirements Global and National					
	of renewable energy sources. Impact of renewa					
	on environment, Kyoto Protocol.					

	Solar Energy:		
2	Solar radiation - beam and diffuse radiation, solar constant, earth sun		
2	angles, attenuation and measurement of solarradiation, local solar	00	
	time, derived solar angles, sunrise, sunset and day length. flat plate	08	
	collectors, concentratingcollectors, Solar air heaters-types, solar		
	driers, storage of solar energy-thermal storage, solar pond, solar		
	water heaters, solar distillation, solar still, solar cooker, solar heating		
	& cooling of buildings, photo voltaic - solar cells, different typesof		
	PV Cells, Mono-poly Crystalline and amorphous Silicon solar cells.		
	Design of PV array. Efficiency and cost of PV systems & its		
	applications. PV hybrid systems		
	Wind Energy:		
3	Principle of wind energy conversion; Basic components of wind		
	energy conversion systems; wind mill components, varioustypes and	05	
	their constructional features; design considerations of horizontal and		
	vertical axis wind machines: analysis of aerodynamic forces acting		
	on wind mill blades and estimation of power output; wind data and		
	site selection considerations		
	Energy from Biomass:		
4	Biomass conversion technologies, Biogas generation plants,		
	classification, advantages and disadvantages, constructional details,	05	
	site selection, digester design consideration, filling a digester for		
	starting, maintaining biogas production, Fuel properties of bio gas,		
	utilization of biogas		
	Geothermal Energy:		
5	Estimation and nature of geothermal energy, geothermal sources and		
	resources like hydrothermal, geo-pressured hot dryrock, magma.	05	
	Advantages, disadvantages and application of geothermal energy,		
	prospects of geothermal energy in India.		
6	Energy from Ocean:		
	Ocean Thermal Electric Conversion (OTEC) systems like open		
	cycle, closed cycle, Hybrid cycle, prospects of OTEC inIndia.	05	
	Energy from tides, basic principle of tidal power, single basin and		
	double basin tidal power plants, advantages, limitation and scope of		
	tidal energy. Wave energy and power from wave, wave energy		
	conversion devices, advantages and disadvantages of wave energy.		
7	Magneto Hydrodynamic power generation:	05	
	Principle of MHD power generation, MHD system, Design		
	problems and developments, gas conductivity, materials forMHD		
<u> </u>	generators and future prospects.		
8	Hydrogen Energy:		
	Introduction, Hydrogen Production methods, Hydrogen storage,	03	
	hydrogen transportation, utilization of hydrogen gas, hydrogen as		
	alternative fuel for vehicles.		
9	Fuel cell:		
	Introduction, Design principle and operation of fuel cell, Types of	03	
	fuel cells, conversion efficiency of fuel cell, application of fuel cells		

Text books:

1. Renewable energy sources and conversion technology, Bansal Keemann, Meliss, Tata Mc

Graw Hill.

- 2. Energy Technology, O.P. Gupta, Khanna Publishing House.
- 3. Renewable energy resources and emerging technologies, D.P. Kothari, PHI.
- 4. Non-conventional Energy sources, G.D. Rai, Khanna Publishers.
- 5. Non Conventional Energy Resources, Chandra, Khanna Publishing House.

Reference books

1. Non-conventional Energy, Ashok V. Desai, New Age International Publishers Ltd.

Course Outcome:

SL NO.	Statement
PE-EE-501C.1	To describe the fundamentals of Renewable and Non-Conventional energy
PE-EE-501C.2	To explain the conversion of energy from Solar, Wind abs Biomass
PE-EE-501C.3	To illustrate the concept of Geothermal, Magneto Hydrodynamic and energy from Ocean.
PE-EE-501C.4	To distinguish the utilization of Hydrogen Energy and Fuel Cell

				Co	ompute	r Organ	ization					
CO'S						P	O'S					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	3	-	-	-	-	2	2
CO2	2	2	-	2		2	2	2		1	2	2
CO3	2	2	2	3	1	3	2	3	1	1	3	2
CO4	1	1	-	1	1	2	-	1	1	1	1	2
Avg	2.00	2.00	2.00	2.00	1.33	2.50	2.00	2.00	1.00	1.00	2.00	2.00

6th Semester

Semester-VI

Name	of the course	POWER SYSTEM-II				
	e Code: PC-EE-601	Semester: 6 th				
	ion: 6 months	Maximum Marks: 100	1			
Teach	ing Scheme	Examination Scheme				
	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
	al: 0hr/week	Assignment & Quiz: 1				
Credit	Points: 3	Attendance: (05 Marks			
		End Semester Exam: 7	0 Marks			
Objec						
1.	To understand the method of representation of		nents			
2.	To know about loacation and components of a	distribution substation.				
3.	To understand different methods of load flow	studies.				
4.	To determine faults in Electrical systems.					
5.	To understand the principle of power system s	tability.				
6.	To understand the principle of relays and meth	ods of protection of pov	ver system			
7.	To solve numerical problems on the topics stud	died.				
Pre-R	equisite					
1.	Electric Circuit Theory (PC-EE-301)					
2.	Electromagnetic field theory (PC-EE-303)					
3.	Power system-I (PC-EE-502)					
Unit	Content		Hrs	Marks		
1	Representation of Power system components	nents: Single-phase				
	representation of balanced three phase net	works, the one-line				
	diagram and the impedance or reactance dia	omana man mait (DII)	02			
	diagram and the impedance of reactance dia	igram, per unit (PU)	-			
		igram, per unit (PO)				
	system.					
	system. Distribution substation: Types of substa	ations, location of				
2	system. Distribution substation: Types of substations, substation equipments and ac	ations, location of cessories, earthling	05			
2	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut	ations, location of cessories, earthling				
2	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems.	ations, location of cessories, earthling cors, radial and loop				
2	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation	ations, location of occasionies, earthling cors, radial and loop on, formation of Ybus,	05			
2	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method	ations, location of cessories, earthling cors, radial and loop on, formation of Ybus, d, Newton-Raphson				
	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compared to the system.	ations, location of cessories, earthling cors, radial and loop on, formation of Ybus, d, Newton-Raphson	05			
2	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method	ations, location of cessories, earthling cors, radial and loop on, formation of Ybus, d, Newton-Raphson	05			
	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compare methods.	ations, location of cessories, earthling fors, radial and loop on, formation of Ybus, d, Newton-Raphson parison of load flow	05			
3	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compare methods. Faults in Electrical systems: Transient on a transient on a transient on a transient of substations of substations and substations are substationally systems.	ations, location of cessories, earthling cors, radial and loop on, formation of Ybus, d, Newton-Raphson parison of load flow	05			
	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compare methods. Faults in Electrical systems: Transient on a tracticuit of a synchronous machine under no local systems.	ations, location of cessories, earthling fors, radial and loop on, formation of Ybus, d., Newton-Raphson parison of load flow ansmission line, short ad & loaded condition.	05			
3	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compare methods. Faults in Electrical systems: Transient on a transient on a transient on a transient of substations of substations and substations are substationally systems.	ations, location of cessories, earthling fors, radial and loop on, formation of Ybus, d., Newton-Raphson parison of load flow ansmission line, short ad & loaded condition.	05			
3	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compare methods. Faults in Electrical systems: Transient on a tracticuit of a synchronous machine under no local systems.	ations, location of cessories, earthling fors, radial and loop on, formation of Ybus, d, Newton-Raphson parison of load flow ensmission line, short ad & loaded condition.	05			
3	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compare methods. Faults in Electrical systems: Transient on a tracircuit of a synchronous machine under no los Symmetrical component transformation, sequipments sequence network of power system, synthesis	ations, location of cessories, earthling fors, radial and loop on, formation of Ybus, d. Newton-Raphson parison of load flow ansmission line, short ad & loaded condition. The center impedance and anchronous machine,	05			
3	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compare methods. Faults in Electrical systems: Transient on a tracircuit of a synchronous machine under no loss Symmetrical component transformation, seques sequence network of power system, syntransmission lines and transformers. Symmetrical components.	ations, location of cessories, earthling cors, radial and loop on, formation of Ybus, d. Newton-Raphson parison of load flow ansmission line, short ad & loaded condition. Hence impedance and anchronous machine, metrical component	05			
3	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compare methods. Faults in Electrical systems: Transient on a tracticuit of a synchronous machine under no loss Symmetrical component transformation, sequipments sequence network of power system, syntransmission lines and transformers. Symmanalysis of unsymmetrical faults, single line-to-	ations, location of cessories, earthling cors, radial and loop on, formation of Ybus, d. Newton-Raphson parison of load flow ansmission line, short ad & loaded condition. Hence impedance and anchronous machine, metrical component	05			
3	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compare methods. Faults in Electrical systems: Transient on a tracticuit of a synchronous machine under no lost Symmetrical component transformation, sequence network of power system, syntansmission lines and transformers. Symmanalysis of unsymmetrical faults, single line-to-line fault, double line-to-ground fault	ations, location of cessories, earthling fors, radial and loop on, formation of Ybus, d., Newton-Raphson parison of load flow ensmission line, short ad & loaded condition. Hence impedance and inchronous machine, metrical component o -ground fault, lineto-	05			
3	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compare methods. Faults in Electrical systems: Transient on a tracificuit of a synchronous machine under no lost Symmetrical component transformation, sequipments sequence network of power system, syntransmission lines and transformers. Symmanalysis of unsymmetrical faults, single line-to-line fault, double line-to-ground fault Power system stability: Steady state stability	ations, location of cessories, earthling cors, radial and loop on, formation of Ybus, d. Newton-Raphson parison of load flow ensmission line, short ad & loaded condition. Hence impedance and inchronous machine, metrical component orground fault, lineto-	05 05 08			
3	system. Distribution substation: Types of substations, substation equipments and ac (system & equipment), feeder and distribut systems. Load flow studies: Network model formulation load flow problem, Gauss-Siedel method method, Decoupled load flow studies, compare methods. Faults in Electrical systems: Transient on a tracticuit of a synchronous machine under no lost Symmetrical component transformation, sequence network of power system, syntansmission lines and transformers. Symmanalysis of unsymmetrical faults, single line-to-line fault, double line-to-ground fault	ations, location of cessories, earthling cors, radial and loop on, formation of Ybus, d. Newton-Raphson parison of load flow ensmission line, short ad & loaded condition. Hence impedance and inchronous machine, metrical component orground fault, lineto-	05			

6	Power system protection: Protective zones, Relaying elements and	12	
	quantities. Protective relays, basic requirements and type of		
	protection, phase and amplitude comparator, grading (time &		
	current), classification of Electromagnetic relays, Directional relay,		
	Distant relay, Differential relay, basic aspects of static and digital		
	relays, relay protection scheme for transformer, feeder, generators		
	and motors.		
	Circuit breakers, circuit breaking transients, transient recovery		
	voltage, current chopping and resistance switching, circuit breaker		
	rating, arc and arc extinction, circuit breaker types, oil circuit		
	breaker, vacuum circuit breaker, air blast circuit breaker, SF6 circuit		
	breaker and operating mechanism, advantages and disadvantages		
	of different types		

Text book:

- 1. Modern Power System Analysis, D.P. Kothari & I.J. Nagrath, 4th Edition, Tata McGraw Hill.
- 2. Electrical Power Systems, Subir Ray, PHI
- 3. Switchgear protection and power systems, Sunil S Rao, Khanna Publications.
- 4. A text book on Power System Engineering, M.L.Soni, P.V.Gupta, U.S. Bhatnagar & A. Chakrabarti, Dhanpat Rai & CO.

Reference Books:

- 1. Protection & Switchgear, B. Bhalja, R.P. Maheshwari, N.G.Chothani, Oxford.
- 2. Power system protection & switchgear, B.Ram & D.N. Vishwakarma, Tata McGraw Hill.
- 3. Handbook of Electrical Power Distribution, G. Ramamurthy, University Press
- 4. Electric Power Transmission and Distribution, S. Sivanagaraju, S.Satyanarayana, Pearson Education.
- 5. Power Systems Stability, Vol. I,II & II, E.W. Kimbark, Wiley.
- 6. Power Engineering, D.P Kothari & I.J. Nagrath, Tata McGraw Hill.
- 7. Power Systems Analysis, A. R. Bergen & V. Vittal, Pearson Education. 8. Computer Aided Power systems analysis, Dr. G. Kusic, CEC press.

Course Outcome:

After completion of this course, the learners will be able to

Course outcome codes	Statement
PC-EE-601.1	To explain the operation of various power system components
PC-EE-601.2	To determine the line flows using G-S, N-R and F-D method
PC-EE-601.3	To analyse the stability & types of faults along with their effects
PC-EE-601.4	To evaluate the fault current in case of L-G, L-L and L-L-G faults

	РО	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
PC-EE- 601.1	3	3	2	1	1	1	1	-	-	1	-	2	3	2
PC-EE- 601.2	3	3	2	2	1	2	2	-	-	1	1	2	2	3
PC-EE- 601.3	3	3	3	3	2	2	2	-	3	2	2	3	3	3
PC-EE- 601.4	3	3	3	2	3	3	3	-	2	-	3	3	3	3
Avera ge	3	3	2	2	2	2	2	-	1	1	1	2	3	3

Name	of the course	MICROPROCESSOF	R & MICRO					
		CONTROLLER						
Cours	e Code: PC-EE-602	Semester: 6th						
Durat	ion: 6 months	Maximum Marks: 100)					
Teach	ing Scheme	Examination Scheme						
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks					
Tutori	al: 0hr/week	Assignment & Quiz: 1	0 Marks					
Credit	Points: 3	Attendance:	05 Marks					
		70 Marks						
Objec	tive:							
1.	To understand the architecture of 8086 microprocessor.							
2.	To understand the design aspects of I/O and Memory Interfacing circuits.							
3.	To interface microprocessors with supporting	chips.						
4.	To understand the architecture of 8051 micro	controller.						
5.	To design a microcontroller based system							
Pre-R	equisite							
1.	Analog Electronics (PC-PC-EE-303)							
2.	Digital Electronics (PC-EE-402)							
Unit	Content		Hrs	Marks				
1	The 8086 Microprocessor: Introduction to 80	086- Microprocessor						
	architecture - Addressing modes - Instructi	on set and assembler						
	directives - Assembly language progra	08						
	Programming - Linking and Relocation - S	Stacks - Procedures -						
	Macros - Interrupts and interrupt service rout							
	Manipulation.							

2	8086 System bus structure: 8086 signals - Basic configurations - System bus timing -System design using 8086 - I/O programming - Introduction to Multiprogramming - System Bus Structure - Multiprocessor configurations - Coprocessor, Closely coupled and loosely Coupled configurations - Introduction to advanced processors.	08
3	I/O INTERFACING: Memory Interfacing and I/O interfacing - Parallel communication interface - Serial communication interface - D/A and A/D Interface - Timer - Keyboard /display controller - Interrupt controller -DMA controller - Programming and applications Case studies: Traffic Light control, LED display, LCD display, Keyboard display interface and Alarm Controller.	08
4	Microcontroller: Architecture of 8051 - Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes - Assembly language programming.	08
5	Interfacing Microcontroller: Programming 8051 Timers - Serial Port Programming - Interrupts Programming - LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation - Comparison of Microprocessor, Microcontroller, PIC and ARM processors	06

Text books:

- 1. Advanced Microprocessors and Peripheral, Koshor M Bhurchandi, Ajay Kumar Ray, 3rd Edition, MC Graw hill education.
- 2. Microprocessor & Interfacing, D.V. Hall, Mc Graw Hill.
- 3. The 8051 microcontroller, Ayala, Thomson.

Ref erence books:

- 1. Advanced Microprocessors, Y. Rajasree, New Age international Publishers.
- 2. An introduction to the Intel family of Microprocessors, James L. Antonakos, Pearson Education,
- 3. The 8051 Microcontroller and Embedded systems, Muhammad Ali Mazidi & J. G. Mazidi, Pearson Education.
- 4. The 8086 Microprocessors: Programming & Interfacing the PC, K.J.Ayala, Thomson.
- 5. Microprocessor & Peripherals, S.P. Chowdhury & S. Chowdhury, Scitech.
- 6. Microchip technology data sheet, www.microchip.comerence books

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain the architecture of 8086 and 8051 and develop micro- processor/ microcontroller based systems.
- 2. Illustrate the assembly language programming of 8086, 8051
- 3. Explain the interface different peripheral with 8086 and 8051
- 4. Analyze microprocessor, microcontroller, PIC and ARM processors

Course Outcome:

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

Name	of the course DI	IGITAL CONTROL	SYSTEM					
		emester: 6th						
		Maximum Marks: 100						
Teach	ing Scheme Ex							
Theor	ry: 3 hrs/week Mi	id Semester Exam: 1	5 Marks					
		ssignment & Quiz: 1	0 Marks					
Credit	t Points: 3	ttendance: ()5 Marks					
	En	nd Semester Exam: 7	0 Marks					
Objec	etive:							
1.	To understand the principle of sampling and record							
2.	To find Z-tranaform and inverse Z-transform of s							
3.	To carry out the analysis and design of digital control systems							
4.	To design compensators for digital control system to achieve desired specifications.							
5.	To represent digital control systems using state space models.							
6.	To analyze the effect sampling on stability, controllability and observability.							
7.	To design digital controllers for industrial applica							
8.	To solve numerical problems on the topics studied	d.						
Pre-R	equisite							
1.	Control system (PC-EE-503)			T				
Unit	Content		Hrs	Marks				
1	Sampling and reconstruction: Introduction, Ex	xamples of Data						
	control systems - Digital to Analog conversion an	nd Analog to Digital	03					
	conversion, sample and hold operations.							
	Z-transform: Introduction, Linear difference	equations pulse						
	response, Z - transforms, Theorems of Z		05					
2	the inverse Z - transforms, Modified Z- Transform		03					
	,							
	Z- Plane analysis of discrete-time control system		05					
	method for solving difference equations; Pulse to	· ·	US					
3	block diagram analysis of sampled - data sys	stems, mapping						
]	between s-plane and z-plane.							

4	State space analysis: State Space Representation of discrete time systems, Pulse Transfer Function Matrix solving discrete time state space equations, State transition matrix and it's Properties, Methods for Computation of State Transition Matrix, Discretization of continuous time state - space	06
	equations.	
5	Controllability and observability: Concepts of Controllability and Observability, Tests for controllability and Observability. Duality between Controllability and Observability, Controllability and Observability conditions for Pulse Transfer Function	04
6	Stabilty analysis: Mapping between the S-Plane and the Z-Plane - Primary strips and Complementary Strips - Constant frequency loci, Constant damping ratio loci, Stability Analysis of	05
	closed loop systems in the Z-Plane. Jury stablility test - Stability Analysis by use of the Bilinear Transformation and Routh Stability criterion.	
7.	Design of discrete time control system by conventional methods: Transient and steady - State response Analysis - Design based on the frequency response method - Bilinear Transformation and Design procedure in the w-plane, Lead, Lag and Lead-Lag compensators and digital PID controllers.	06
8.	State feedback controllers and observers: Design of state feedback controller through pole placement - Necessary and sufficient conditions, Ackerman's formula. State Observers - Full order and Reduced order observers.	05

Text book:

- 1. Digital Control and State Variable Methods , M. Gopal, TMH Publishers
- 2. Discrete-time Control Systems, K. Ogata, Pearson Education,
- 3. Digital Control Systems, B.C. Kuo, Wiley Publications.
- 4. Control System Engineering, I.J. Nagrath, M. Gopal, New age International.

Reference books

- 1. Digital control of dynamic systems, Gene F. Franklin, J. David Powell, and Michael Workman 3rd ed, 1998, Addison-Wesley.
- 2. Digital Control Systems, design, identification and implementation, Landau, Ioan Doré, Zito, Gianluca, Springer-Verlag London.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain the principle of sampling and reconstrction of analog signal.
- 2. Solve Z-transformation and inverse Z-transformation of systems.
- 3. Analyze the effect sampling on stability, controllability and observability.
- 4. Design compensators for digital control system to achieve desired specifications.
- 5. Compose digital control systems using state space models.

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	2
CO2	3	3	1	2	-	1	-	3	1	1	1	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	3	1	-	1	1	-	3	2	2	-	1
CO5	3	3	1	-	1	1	-	3	2	2	-	1
Avg.	3	3	1	1	1	1	1	3	2	1.5	1	2

Nama	of the course H	VDC TRANSMISSIO)NI						
		emester: 6th	JN						
Durai	ion: 6 months M	<u> Iaximum Marks: 100</u>							
Teach	ing Scheme E:	xamination Scheme							
		lid Semester Exam: 1:	5 Marks						
	al: 0hr/week A	ssignment & Quiz: 1							
	cal: hrs/week A	ttendance: ()5 Marks						
Credit	Points: 3	ttendance: (nd Semester Exam: 7	0 Marks						
Objec	tive:								
1.	To understand the basics of DC power transmssion	on system							
2.	To analyse HVDC converters.								
3.	To understand methods of control of HVDC system								
4.	To understand causes of fault and protection against fault of converters.								
5.	To understand function of smooting reactor and transient over voltage of DC line								
6.	To understand methods of reactive power contro								
7.	To solve numerical problems on the topics studie	ed.							
Pre-R	equisite								
1.	Electric Circuit Theory (PC-EE-301)								
2.	Power system-1 (PC-EE-502)								
3.	Control system (PC-EE-503)								
4.	Power Electronics (PC-EE-504)			1					
Unit	Content		Hrs	Marks					
1	DC power transmission technology: Introduction	on, Comparison of							
	HVAC and HVDC transmission system, A	applications of DC	2.4						
	transmission, Description of DC trans	smission system,	04						
	Configurations, Modern trends in DC transmission	on.							
	Analysis of HVDC converters: Pulse number, C	hoice of converter							
	configuration, Simplified analysis of Graetz circu		06						
2	characteristics, Characteristics of a twelve-pulse								
	analysis of converters with and without overlap	converter, Detailed							
	Converter and HVDC system control: General, P	Principles of DC link							
	· · · · · · · · · · · · · · · · · · ·	06							
	control, Converter control characteristics, Syste		VU						
	Converter faults and protection: Converter	-	0.5						
4	against over-currents, Overvoltages in a conve	rter station, Surge	05						
	arresters, Protection against over-voltages.								

5	Smoothing reactor and DC line: Introduction, Smoothing reactors, DC line, Transient over voltages in DC line, Protection of DC line, DC breakers, Monopolar operation, Effects of proximity of AC and DC transmission lines.	06
6	Reactive power control: Reactive power requirements in steady state, Sources of reactive power, Static VAR systems, Reactive power control during transients, Harmonics and filters, Generation of harmonics, Design of AC filters and DC filters.	06
7.	Component models for the analysis of ac/dc systems: General, Converter model, Converter control, Modelling of DC network, Modelling of AC networks. Power flow analysis in AC/DC systems: General, Modelling of DC links, Solution of DC load flow, Discussion, Per unit system for DC quantities.	06

Text book:

1. HVDC Power transmission systems , K.R. Padiyar , Third Edition, New Age International Publishers

Reference books

- 1. Power Transmission by Direct Current, Erich Uhlmann, Fourth Indian Reprint, Springer International Edition, 2012.
- 2. HVDC Transmission, S Kamakshaiah, V Kamaraju, 2nd Edition, Mcgraw Hill Education, 2020.
- 3. Direct Current Transmission, E.W.Kimbark, Wiley-Blackwell; Volume 1 edition (1 January 1971)
- 4. H.V.D.C Transmission , J Arrillaga , 1st Edition, The Institution of Engineering and Technology, 1998

Course Outcome:

After completion of this course, the learners will be able to

- 1. Define intelligently AC and DC transmission systems for the dedicated application(s).
- 2. Choose the suitable two-level/multilevel configuration for high power converters.
- 3. Analyze the protection methods for various converter faults.
- 4. Select suitable reactive power compensation method.
- 5. Point out the configuration for harmonic mitigation on both AC and DC sides.

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	2
CO2	3	3	1	2	-	1	-	3	1	1	1	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	3	1	-	1	1	-	3	2	2	-	1

CO5	3	3	1	-	1	1	-	3	2	2	-	1
Avg.	3	3	1	1	1	1	1	3	2	1.5	1	2

		ELECTRICAL MACHINE DESIGN						
		Semester: 6th						
Durat	ion: 6 months	Maximum Marks: 100						
		Examination Scheme						
		Mid Semester Exam: 15 Marks						
		Assignment & Quiz: 1						
Credit			05 Marks					
		End Semester Exam: 7	0 Marks					
Objec	tive:							
1.	To understand the baisc principle of design of I	Electric machines.						
2.	To understand basics of design of Transformer,		l Synchronous r	nachines.				
3.	To understand different factors that influence d							
4.	To undertand the need and use software tools f							
5.	To solve numerical problems on the topics stud							
	equisite							
1.	Electric Machine-I (PC-EE-401)							
2.	Electric Machine-II (PC-EE-501)							
Unit	Content		Hrs	Marks				
1	Introduction: Major considerations in Electri	cal Machine Design -						
	Electrical Engineering Materials - Space factor	r - Choice of Specific						
	Electrical and Magnetic loadings - Thermal co	_	04					
	flow - Temperature rise and Insulating Ma							
	machines - Standard specifications.	are the state of						
	Transformer: Output Equations - Main Dimens	sions - kVA output for						
	single and three phase transformers - Wind	_	10					
	Design of core and winding - Overall dime	-	10					
2	~							
	characteristics - No load current - Temp	^						
	Transformers - Design of Tank - Method	ds of cooling of						
	Transformers.							
	Induction motors: Output equation of Indu		4.0					
3	dimensions - Choice of Average flux density		10					
	Rules for selecting rotor slots of squirrel cage							
	rotor bars & slots - Design of end rings - Design	gn of wound rotor -						
	Magnetic leakage calculations - Leakage read	ctance of polyphase						
	machines- Magnetizing current - Short circuit	current - Operating						
	characteristics- Losses and Efficiency.	1 8						
	Synchronous machines: Output equations - ch	oice of Electrical and						
	Magnetic Loading - Design of salient pole made		10					
4	ratio - shape of pole face - Armature de		-					
	parameters - Estimation of air gap length - Des							
	of damper winding - Determination of full load							
		•						
	of field winding - Design of turbo alternators - Rotor design.							
	Computer aided Design (CAD): Limitations		05					
	traditional designs, need for CAD analysis, sy	ynthesis and hybrid	05					

methods, design optimization methods, variables, constraints and	
objective function, problem formulation.	

Text book:

- 1. A Course in Electrical Machine Design, A.K. Sawhney, Dhanpat rai and sons.
- 2. Electrical machine design, V. rajini, V.S. Nagarajan, Pearson India education services Pvt. Ltd.
- 3. Computer Aided Design of Electrical Machine, K. M. V. Murthy, B.S. Publications.

Reference books

- 1. Design and Testing of Electrical Machines, M.V.Deshpande, PHI
- 2. Principles of Electrical Machine Design, 3rd Edition, S.K. sen, Oxf-Ibh
- 3. Computer Aided Design of Electrical Equipment, M. Ramamoorthy, East-West Press.

Course Outcome:

Course outcome codes	Statement					
PE-EE-601C.1	Describe basic specifications of Machine Design					
PE-EE-601C.2	Explain the complete design of a transformer					
PE-EE-601C.3	Assess the overall dimensions of an Induction Motor					
PE-EE-601C.4	Design stator and rotor part of a Synchronous Machine					

	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

Name of the course	ELECTRICAL AND HYBRID VEHICLE
Course Code: PE-EE-602A	Semester: 6th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks
Tutorial: 0 hr/week	Assignment & Quiz: 10 Marks
Credit Points: 3	Attendance: 05 Marks

	End Semester Exam: 7	'0 Marks							
Ohioo	4ivra.								
Object 1.	To understand the basic difference between conventional and Hybrid	vehicles							
2.	To understand different configuration and control of Electric drives.	venicies.							
3.	To understand energy storage system in Hybrid vehicles.								
4.	To understand different energy management strategies of Hybrid vehicles.								
5.	To solve numerical problems on the topics studied								
	Pre-Requisite								
1.	Electric Machine-I (PC-EE-401)								
2.	Electric Machine-II (PC-EE-501)								
Unit	Content	Hrs	Marks						
	Introduction: Conventional Vehicles: Basics of vehicle performance,								
	vehicle power source characterization, transmission characteristics,								
	mathematical models to describe vehicle performance.								
1	Introduction to Hybrid Electric Vehicles: History of hybrid and	00							
1	electric vehicles, social and environmental importance of hybrid	09							
	and electric vehicles, impact of modern drive-trains on energy								
	supplies.								
	Hybrid Electric Drive-trains: Basic concept of hybrid traction,								
	introduction to various hybrid drive-train topologies, power flow								
	control in hybrid drive-train topologies, fuel efficiency analysis.								
	Electric Trains: Electric Drive-trains: Basic concept of electric								
	traction, introduction to various electric drivetrain topologies,								
	power flow control in electric drive-train topologies, fuel efficiency								
2	analysis.	10							
	Electric Propulsion unit: Introduction to electric components used								
	in hybrid and electric vehicles, Configuration and control of DC								
	Motor drives, Configuration and control of Induction Motor drives,								
	configuration and control of Permanent Magnet Motor drives,								
	Configuration and control of Switch Reluctance Motor drives, drive								
	system efficiency.								
	Energy Storage: Energy Storage: Introduction to Energy Storage								
	Requirements in Hybrid and Electric Vehicles, Battery based energy								
	storage and its analysis, Fuel Cell based energy storage and its	09							
3									
	analysis, Super Capacitor based energy storage and its analysis,								
	Flywheel based energy storage and its analysis, Hybridization of								
	different energy storage devices. Sizing the drive system: Matching								

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

	the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems		
4	Energy Management Strategies: Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.	06	
5	Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).	05	

Text book:

- 1. Electric and Hybrid Vehicles: Design Fundamentals, Iqbal Hussein, CRC Press.
- 2. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, C. Mi, M. A. Masrur and D. W. Gao, John Wiley & Sons.
- 3. Electric and Hybrid Vehicles: Khanna Publishing House.
- 4. Hybrid Electric Vehicles: Energy Management Strategies, Onori Simona, Serrao Lorenzo and Rizzoni Giorgio, Springer.
- 5. Electric and Hybrid Vehicles, T. Denton, Routledge.

Reference books

- 1. Electric Vehicle Technology Explained, James Larminie, John Lowry, Wiley.
- 2. Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi CRC Press, 2004.

Course Outcome:

Course outcome codes	Statement
PE-EE-602A.1	To state the basic difference between conventional and Hybrid vehicles.
PE-EE-602A.2	To compare different configuration and control of Electric drives.
PE-EE-602A.3	To calculate the capacity of the energy storage system in Hybrid vehicles.
PE-EE-602A.4	To explain different energy management strategies of Hybrid vehicles.

	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12

CO1	3	3	1	2	-	-	1	3	2	_	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

		POWER QUALITY A	ND FACTS					
		Semester: 6th						
Durat	tion: 6 months	Maximum Marks: 100						
		Examination Scheme						
		Mid Semester Exam: 1						
		Assignment & Quiz: 1						
Credi			05 Marks					
		End Semester Exam: 7	0 Marks					
01:								
Objec		. 1.1 .00 . 0	1 , 1 '					
1.	To understand the characteristics of ac transmis	ssion and the effect of s	hunt and series	reactive				
	compensation.							
2.	To understand the working principles of FACTS devices and their operating characteristics.							
3.	To understand the basic concepts of power quality. To understand the working principles of devices to improve power quality.							
4.			ility.					
5.	To solve numerical problems on the topics stud	11ed						
1.	lequisite Power system-I (PC-EE-502)							
2.	Control system (PC-EE-503)							
3.	Power Electronics (PC-EE-504)							
Unit	Content		Hrs	Marks				
Omi	Transmission Lines and Series/Shunt	Reactive Power	піѕ	IVIAIKS				
	Compensation: Basics of AC Transmit	,	04					
	uncompensated AC transmission lines. Pass		0.1					
1	Compensation. Shunt and series compensation							
1	an AC line. Comparison of Series and Shunt Co							
	Thyristor-based Flexible AC Transmission C	` ,						
	Description and Characteristics of Thyristor-ba	ased FACTS devices:						
	Static VAR Compensator (SVC), Thyristo	or Controlled Series						
2	Capacitor (TCSC), Thyristor Controlled Brakin		06					
	Pole Single Throw (SPST) Switch. Conf	-						
	Operation, Harmonics and control of SVC and	_						
	Limiter.	. 1 C.C. I duit Cuitoit						
	Limitei.							

3	Voltage Source Converter based (FACTS) controllers: Voltage Source Converters (VSC): Six Pulse VSC, Multi-pulse and Multi-level Converters, Pulse-Width Modulation for VSCs. Selective Harmonic Elimination, Sinusoidal PWM and Space Vector Modulation. STATCOM: Principle of Operation, Reactive Power Control: Type I and Type II controllers, Static Synchronous Series Compensator (SSSC) and Unified Power Flow Controller (UPFC): Principle of Operation and Control. Working principle of Interphase Power Flow Controller. Other Devices: GTO Controlled Series Compensator. Fault Current Limiter.	08
4	Application of FACTS: Application of FACTS devices for power-flow control and stability improvement. Simulation example of power swing damping in a single-machine infinite bus system using a TCSC. Simulation example of voltage regulation of transmission mid-point voltage using a STATCOM.	04
5	Power Quality Problems in Distribution Systems: Power Quality problems in distribution systems: Transient and Steady state variations in voltage and frequency. Unbalance, Sags, Swells, Interruptions, Wave-form Distortions: harmonics, noise, notching, dc-offsets, fluctuations. Flicker and its measurement. Tolerance of Equipment: CBEMA curve.	04
6.	DSTATCOM: Reactive Power Compensation, Harmonics and Unbalance mitigation in Distribution Systems using DSTATCOM and Shunt Active Filters. Synchronous Reference Frame Extraction of Reference Currents. Current Control Techniques for DSTATCOM.	06
7.	Dynamic Voltage Restorer and Unified Power Quality Conditioner: Voltage Sag/Swell mitigation: Dynamic Voltage Restorer - Working Principle and Control Strategies. Series Active Filtering. Unified Power Quality Conditioner (UPQC): Working Principle. Capabilities and Control Strategies.	06

Text book:

1. FACTS Controllers in Power Transmission and Distribution, N K. R. Padiyar, New Age International (P) Ltd. 2007.

Reference books

- 1. Understanding FACTS: Concepts and Technology of FACTS Systems, N. G. Hingorani and L. Gyugyi Wiley-IEEE Press, 1999.
- 2. Reactive Power Control in Electric Systems, T. J. E. Miller, John Wiley and Sons, New York, 1983
- 3. Electrical Power Systems Quality", R. C. Dugan, McGraw Hill Education, 2012.
- 4. Electric Power Quality, G. T. Heydt, Stars in a Circle Publications, 1991

Course Outcome:

After completion of this course, the learners will be able to

- 1. State the working principle of dynamic voltage restorer and UPQC
- 2. Analyse uncompensated AC transmission line.
- 3. Explain the working principles of FACTS devices, DSTATCOM and their operating characteristics.
- 4. Point out the different issues of power quality in distribution system.

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
соз	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

		INDUSTRIAL ELECT	RICAL SYST	EMS				
		Semester: 6th						
Durat	tion: 6 months	Maximum Marks: 100	l					
		Examination Scheme						
	-	Mid Semester Exam: 1						
		Assignment & Quiz: 1						
Credi			05 Marks					
		End Semester Exam: 7	0 Marks					
	ective:							
1.	To understand the electrical wiring systems wi		rawings and SL	LD for				
	residential, commercial and industrial consume							
2.	To understand various components of industria							
3.	To analyze and selec tthe proper size of various							
4.	To understand methods of automation of Industrial Electrical Systems							
5.	To solve numerical problems on the topics studied							
Pre-R	equisite							
1.	Power system-I (PC-EE-502)							
2.	Control system (PC-EE-503)							
3.	Power Electronics (PC-EE-504)			1				
Unit	Content		Hrs	Marks				
	Electrical System Components: LT system							
	selection of cables, wires, switches, distribu	ution box, metering	0.6					
	system, Tariff structure, protection components	s- Fuse, MCB, MCCB,	06					
	ELCB, inverse current characteristics, symbol	ls, single line diagram						
1	(SLD) of a wiring system, Contactor, Isolator, I							
	shock and Electrical safety practices	, , ,						
	Residential and Commercial Electrical System	s :Types of residential						
	and commercial wiring systems, general rule	- 1						
	installation, load calculation and sizing of							
2	<u> </u>	_	08					
	switch, distribution board and protection devi							
	calculations, requirements of commercial in							
	lighting scheme and number of lamps, earth	_						
	installation, selection and sizing of component	S.						

3	Illumination Systems: Understanding various terms regarding light, lumen, intensity, candle power, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of a lighting scheme for a residential and commercial premises, flood lighting.	06	
	Industrial Electrical Systems I: HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting		
4	of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction - kVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components.	06	
5	Industrial Electrical Systems II: DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks.	06	
6.	Industrial Electrical System Automation: Study of basic PLC, Role of in automation, advantages of process automation, PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation.	06	

Text book:

- 1. Electrical Wiring, Estimating & Costing, S. L. Uppal and G. C. Garg, Khanna publishers, 2008.
- 2. Electrical Design, Estimating & Costing, K. B. Raina, New age International, 2007.

Reference books:

- 1. Electrical estimating and costing, S. Singh and R. D. Singh, Dhanpat Rai and Co., 1997.
- 2. Web site for IS Standards.
- 3. Residential Commercial and Industrial Systems, H. Joshi, McGraw Hill Education, 2008.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Describe electrical wiring system for residential, commercial and industrial consumers & automation of Industrial Electrical Systems.
- 2. Select transformer, switchgear, protection equipments for industrial electrical systems.
- 3. Classify the rating of components of residential and commercial electrical systems.
- 4. Illustrate lighting scheme for a residential and commercial premises.

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3

CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

Name	of the course	DIGITAL SIGNAL PI	ROCESSING				
Cours	e Code: OE-EE-601A	Semester: 6th					
Durat	ion: 6 months	Maximum Marks: 100					
	ing Scheme	Examination Scheme					
	y: 3 hrs/week	Mid Semester Exam: 1					
	al: 0 hr/week	Assignment & Quiz: 1					
Credit	Points: 3		05 Marks				
		End Semester Exam: 7	0 Marks				
Objec	tive:						
1.	To understand sampling and reconstruction of signal						
2.	To understand the method of Z-transform and		signal and its pr	operties			
3.	To understand Discrete Fourier Transform		•	•			
4.	To understand methods of design of Digital f	ilters					
5.	To understand applications of Digital signal pr	rocessing					
6.	To solve numerical problems on the topics stu	died					
	equisite						
1.	Electric circuit theory (PC-EE-301)						
2.	Control system (PC-EE-503)		· · · · · · · · · · · · · · · · · · ·				
Unit	Content		Hrs	Marks			
	Discrete-time signals and systems: Discre						
	systems: Sequences; representation of sig		06				
	basis; Representation of discrete system	ms using difference	06				
1	equations, Sampling and reconstruction of						
1	Sampling theorem and Nyquist rate.	C.					
	Z-transform: z-Transform, Region of con-	vergence, Analysis					
	of Linear Shift Invariant systems using z-t	_	06				
	of z-transform for causal signals, Interpret	-					
2	z-domain, Inverse z- transforms.	action of stability in					
	Discrete Fourier Transform: Frequency	Domain Analysis					
	Discrete Fourier Transform (DFT), F						
			08				
3	Convolution of signals, Fast Fourier Tr	•					
	Parseval's Identity, Implementation of Dis	screte Time Systems.					
	Design of Digital filters: Design of F	IR Digital filters:					
	Window method, Park-McClellan's method	_					
	Digital Filters: Butterworth, Chebysh						
4	Approximations; Low-pass, Band-pass, I						
			12				
	pass filters. Effect of finite register length	•					
	Parametric and non-parametric spectral estimation.						
	Introduction to multi-rate signal processing						
	Applications of Digital Signal Processing	g: Correlation					

5	Functions and Power Spectra, Stationary Processes, Optimal		
	filtering using ARMA Model, Linear Mean-Square Estimation,	06	
	Wiener Filter.		

Text book:

- 1. Digital Signal Processing-A computer based approach, S. Mitra, TMH
- 2. Digital Signal Processing: Principles, Algorithms & Application, J.C. Proakis & M.G. Manslakis, PHI
- 3. Fundamental of Digital Signal Processing using MATLAB, Robert J. Schilling, S.L. Harris, Cengage Learning.

Reference books

- 1. Digital Signal Processing-implementation using DSP microprocessors with examples from TMS320C54XX, Avtar Singh & S. Srinivasan, Cengage Learning
- 2. Digital Signal Processing, Chen, OUP
- 3. Digital Signal Processing, Johnson, PHI
- 4. Digital Signal Processing using MATLAB, Ingle, Vikas.
- 5. Digital Signal Processing, Ifeachor, Pearson Education.
- 6. Digital Signal Processing, A.V. Oppenhein & R.W. Shaffer, PHI
- 7. Theory and application of Digital Signal Processing, L.R. Rabiner & B. Gold, PHI
- 8. Digital Signal Processing, Ashok Ambarder, Cengage Learning.
- 9. Digital Signal Processing, S. Salivahanan, A. Vallavaris & C. Gnanpruja, TMH.
- 10. Xilinx FPGA user manual and application notes.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Represent signals mathematically in continuous and discrete-time and in the frequency domain.
- 2. analyse discrete-time systems using z-transform.
- 3. explain the Discrete-Fourier Transform (DFT) and the FFT algorithms.
- 4. design digital filters for various applications.
- 5. apply digital signal processing for the analysis of real-life signals.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	1	-	1	-	-	1	1	-	-	-
CO2	2	3	1	-	1	-	-	-	1	1	1
CO3	2	3	1	-	-	1	1	-	1	1	1
CO4	2	3	1	-	-	1	1	-	1	1	1
CO5	2	3	1	-	-	1	1	-	1	1	1

AVG	2	2.6	1	1	1	1	1	1	1	1	1

Name	of the course	COMMUNICATION	ENGINEERIN	G				
		Semester: 6th	EIVOIIVEERGIV	<u> </u>				
		Maximum Marks: 100						
		Examination Scheme						
		Mid Semester Exam: 1:						
		Assignment & Quiz: 10						
Credi			05 Marks					
	I	End Semester Exam: 7	0 Marks					
Objec								
1.	To understand the AM, FM and PM schemes with	rith reference to SNR						
2.	To understand the performance of ASK, FSK, P		digital commu	nication				
	system	SIL, DI SIL, QI SIL III u	a digital comma	in cu tion				
3.	To understand the source coding and channel coding schemes for a given communication link							
4.	To understand the band width requirement and	d probability of error in	n various digita	l modulation				
	systems							
5.	To understand various digital modulation method							
6.	To solve numerical problems on the topics studi	ied						
	equisite (PG FF 202)							
1.	Analog Electronics (PC-EE 302)							
2. Unit	Digital Electronics (PC-EE 402)		Hrs	Marks				
Omi	Content Elements of communication system: The	a alaments of a	піѕ	IVIAIKS				
	communication system, origin of noise and its							
	SNR in system design. Basic principle of linear	-						
	Generation of AM waves, Demodulation of							
1	· · · · · · · · · · · · · · · · · · ·							
	principle of nonlinear (FM, PM) modulation		12					
	waves. Demodulation of FM waves. Sampling							
	rate, impulse sampling, reconstruction from	_						
	Analog pulse modulation-PAM (natural & flat	1 0,						
	PWM, PPM. Basic concept of Pulse code modu	ilation, Block diagram						
	of PCM, Multiplexing-TDM, FDM.	0.00						
	Digital transmission: Concept of Quantization &							
	Uniform quantizer, Non-uniform quantizer, A	•						
2	Encoding, coding efficiency. Line coding & pr	* '						
2	AMI, Manchester coding, PCM, DPCM.	*	08					
	transmission, Matched filter, error rate due to		00					
	cosine function, Nyquist criterion for distort							
	binary transmission, Eye pattern, Signal pow	er in binary digital						
	signal.							
	Digital carrier modulation & demodulation t	technique: Bit rate,						
	Baud rate, Information capacity, Shanon's limit, M-ary encoding,							
2	Introduction to the different digital modu	ulation techniques-	10					
3	ASK.FSK, PSK, BPSK, QPSK, mention of 8	8 BPSK, 16 BPSK.						

	Introduction to QAM, basic of 8 QAM, 16 QAM. Basic concept of Delta modulating, Adaptive delta modulation. Introduction to the concept DPCM. Basic concept of spread spectrum modulation.		
4	Introduction to coding theory: Introduction, News value & Information content, Entropy, Mutual information, Information rate, Shanon-Fano algorithm for encoding, Shanon's theoremsource coding theorem, Channel coding theorem, Information capacity theorem. Basic principle of Error control & coding.	08	

Text book:

- 1. An Introduction to Analog and Digital communication, Simon Haykin, Wiely India.
- 2. Analog communication system, P. Chakrabarti, Dhanpat Rai & Co.
- 3. Principle of digital communication, P. Chakrabarti, Dhanpat Rai & Co.
- 4. Modern Digital and Analog Communication systems, B.P. Lathi, Oxford university press

Reference books

- 1. Digital and Analog communication Systems, Leon W Couch II, Pearson Education Asia.
- 2. Communication Systems, A.B. Calson, Mc Graw Hill.
- 3. Communication Systems, R. Anand, Khanna Publications.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Compare the performance of AM, FM and PM schemes with reference to SNR
- 2. Explain noise as a random process and its effect on communication receivers
- 3. Evaluate the performance of ASK, FSK, PSK, BPSK, OPSK in a digital communication system
- 4. Identify source coding and channel coding schemes for a given communication link
- 5. Analyze various digital modulation methods

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	2	3
CO2	3	3	1	2	-	1	-	3	2	2	2	3
CO3	3	3	1	1	1	-	-	3	2	2	2	3
CO4	3	3	1	-	1	1	-	3	2	2	2	3
CO5	3	3	1	-	1	1	-	3	2	2	2	3
Avg.	3	3	1	2	1	1	1	3	2	2	2	3

Name	of the course	VLSI AND MICRO E	LECTRONICS	1		
	se Code: OE-EE-603C	Semester: 6th				
	tion: 6 months	Maximum Marks: 100				
	ing Scheme	Examination Scheme				
	ry: 3 hrs/week	Mid Semester Exam: 1				
	ial: 0 hr/week	Assignment & Quiz: 1				
Credit	t Points: 3		05 Marks			
		End Semester Exam: 7	0 Marks			
Objec	tivo:					
1.	To understand the concept of VLSI design					
2.	To understand the basics of MOS structure					
3.	To understand the process of VLSI fabrication	nn				
4.	To understand the principle of logic circuit de	esion with hardware desc	rintion language	<u> </u>		
	equisite	osign with haraware dese	inpuon language			
1.	Analog Electronics (PC-EE 302)					
2.	Digital Electronics (PC-EE 402)					
Unit	Content		Hrs	Marks		
	Introduction to VLSI Design: VLSI Design	Concepts, Moor's Law,				
	Scale of Integration (SSI, MSI, LSI, VLSI, U	JLSI - basic idea only),				
	Types of VLSI Chips (Analog & Digital VLSI	• / /	08			
	ASIC, PLA, FPGA), Design principles (Digit					
1	Regularity, Granularity etc), Design Domains					
	Physical), Y-Chart, Digital VLSI Design Steps.					
	MOS structure: E-MOS & D-MOS, Charge inversion in E-MOS,					
	Threshold voltage, Flat band voltage, Potent					
	balance, Inversion, MOS capacitances.	nai balance & Charge				
2	Three Terminal MOS Structure: Body effect					
		I IV -1	12			
	Four Terminal MOS Transistor: Drain curren	·				
	Current-voltage equations (simple derivation					
	Scaling in MOSFET: Short Channel Effe	ects, General scaling,				
	Constant Voltage & Field scaling					
	CMOS: CMOS inverter, Simple Combinatio	nal Gates - NAND gate				
	and NOR Gate using CMOS.					
	Semiconductor Technology- An Overview		10			
2	Oxidation, Epitaxial deposition, Ion-implantat		10			
3	Cleaning, Etching, Photo-lithography - Positi					
	resist.					
	Basic CMOS Technology - (Steps in fabricating CMOS), Basic n-well					
	CMOS process, p-well CMOS process, Twin tub process, Silicon on					
	insulator					
	Layout Design Rule: Stick diagram with examples, Layout rules.					
4 Hardware Description Language - VHDL or Verilog Combinational 08						
	& Sequential Logic circuit Design.					

Text book:

1. Digital Integrated Circuit, J.M.Rabaey, Chandrasan, Nicolic, Pearson Education.

- 2. CMOS Digital Integrated Circuit, S.M.Kang & Y.Leblebici, TMH.
- 3. Modern VLSI Design, Wayne Wolf, Pearson Education.
- 4. VHDL, Bhaskar, PHI.
- 5. Advance Digital Design Using Verilog, Michel D. Celliti, PHI

Reference books

- 1. Digital Integrated Circuits, Demassa & Ciccone, John Willey & Sons .
- 2. Modern VLSI Design: system on silicon, Wayne Wolf; Addison Wesley Longman Publisher
- 3. Basic VLSI Design, Douglas A. Pucknell & Kamran Eshranghian, PHI
- 4. CMOS Circuit Design, Layout & Simulation, R.J.Baker, H.W.Lee, D.E. Boyee, PHI
- 5. Digital System Design using VHDL, R. Anand, Khanna Publications.

COURSE OUTCOME:

After completion of this course, the students will be able to

CO1: Ecplain the principle of design of VLSI circuits
CO2: Explain different MOS structure with characteristics
CO3: Apply different processes for VLSI fabrication
CO4: Use programming language for the design of logic circuits
CO5: Draw the stick diagram and layout for simple MOS circuits

CO MAPPING WITH PO

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	3	-	2	-	-	-	1
CO2	1	1	-	1	2	2	1	-	-	1	-	-
CO3	2	3	1	-	3	1	-	-	1	-	1	-
CO4	2	2	-	1	3	1	1	-	-	-	-	-
CO5	2	2	1	1	2	1	-	1	-	-	1	-

	of the course	ECONOMICS FOR ENGINEERS					
	se Code: HM-EE-601	Semester: 6th					
Durat	tion: 6 months	Maximum Marks: 100					
Tonal	ing Scheme						
	ry: 3 hrs/week	Examination Scheme Mid Semester Exam: 1	5 Marks				
	ial: 0 hr/week	Assignment & Quiz: 1					
	Points: 3		05 Marks				
		End Semester Exam: 7	0 Marks				
Objec							
1.	To understand the process of economic decisi						
2.	To understand the basic financial management						
3. 4.	To develop the skills to analyze financial state To understand the basic of accounting	ements					
	equisite						
1.	Basic understanding of Engineering processes						
Unit	Content		Hrs	Marks			
	Economic Decisions Making - Overview, Pro	blems, Role, Decision					
	making process.						
	Engineering Costs & Estimation - Fixed, V	/ariable, Marginal &					
1	Average Costs, Sunk Costs, Opportunity (Costs, Recurring And					
1	Nonrecurring Costs, Incremental Costs, Cash	n Costs vs Book Costs,	06				
	Life-Cycle Costs; Types Of Estimate, Estima	ating Models - PerUnit	06				
	Model, Segmenting Model, Cost Indexes,	Power-Sizing Model,					
	Improvement & Learning Curve, Benefits.						
	Cash Flow, Interest and Equivalence: Cash	r Flow - Diagrams,					
	Categories & Computation, Time Value Of M	Ioney, Debt repayment,					
2	Nominal & Effective Interest.						
2	Present Worth Analysis: End-Of-Year Conv	ention, Viewpoint Of					
	Economic Analysis Studies, Borrowed Mone	y Viewpoint, Effect Of					
	Inflation & Deflation, Taxes, Economic Criter	ria, Applying Present	10				
	Worth Techniques, Multiple Alternatives.		10				
	Cash Flow & Rate Of Return Analysis - Calo	culations, Treatment of					
	Salvage Value, Annual Cash Flow Analysis, A						
	Rate Of Return, Calculating Rate Of Return,						
	Best Alternative Choosing An Analysis M						
	Analysis, Benefit-Cost Ratio Analysis, Sens						
	Analysis. Economic Analysis In The Public So						
	Valuing Benefits & drawbacks.						
	Uncertainty In Future Events - Estimates And Their Use In Economic						
	Analysis, Range Of Estimates, Probabili	-					
2	Distributions, Expected Value, Economic Dec	cision Trees, Risk, Risk					
3	vs Return, Simulation, Real Options.						
	Depreciation - Basic Aspects, Deterioratio	10					
	Depreciation And Expenses, Types Of Pro-	10					

	Calculation Fundamentals, Depreciation And Capital Allowance Methods, Straight-Line Depreciation Declining Balance Depreciation, Common Elements Of Tax Regulations For Depreciation And Capital Allowances.		
4	Replacement Analysis - Replacement Analysis Decision Map, Minimum Cost Life Of A New Asset, Marginal Cost, Minimum Cost Life Problems. Inflation And Price Change - Definition, Effects, Causes, Price Change With Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows that inflate at different Rates.	08	
5	Accounting - Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions, Cost Accounting, Direct and Indirect Costs, Indirect Cost Allocation.	06	

Text book

- 1. Sociology & Economics for Engineers, Premvir Kapoor, Khanna Publishing House.
- 2. Engineering Economics, James L.Riggs, David D. Bedworth, Sabah U. Randhawa 4e , McGraw-

Hill Education.

- 3. Engineering Economics Analysis, Donald Newnan, Ted Eschembach, Jerome Lavelle , OUP
- 4. Principle of Engineering Economic Analysis, John A. White, Kenneth E.Case, David B.Pratt , Wiley

Reference books

- 1. Engineering Economy, Sullivan and Wicks, Koelling, Pearson
- 2. Engineering Economics, R.Paneer Seelvan, PHI
- 3. Engineering Economics Analysis, Michael R Lindeburg, ,Professional Pub

COURSE OUTCOME:

Student will be able to:

Student win be able to.					
COURSE OUTCOMES (COs)					
CODE	DESCRIPTION				
HSMC-301/ HM- 601/ HM-EE-601. CO 1	Make different economic decisions and estimate engineering costs by applying different cost estimation models.				
HSMC-301/ HM-601/ HM-EE-601.	Create cash flow diagrams for different situations and use different interest formulae to solve associated problems. Take decisions regarding different engineering projects by using various criteria like rate of return analysis, present worth analysis, cost-benefit analysis etc.				
HSMC-301/ HM-	Incorporate the effect of uncertainty in economic analysis by using				

601/ HM-EE-601.	various concepts like expected value, estimates and simulation
CO 3	
HSMC-301/ HM-	Understand the concepts of depreciation, replacement analysis, scope
601/ HM-EE-601	of Finance and the role of financial planning and management, the
.CO 4	process of inflation and use different price

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	1	-	-	-	-	-	-	-	-		-	-
CO2	-	-	3	-	-	-	-	-	-	-	-	-
CO3	-	-	-	2	-	-	-	-	-	-	-	-
CO4	-	2	-	-	-	-	-	-	-	-	-	-
Average	.25	.5	0.75	0.50	-	-	-	-	-	-	-	-

Name	of the course	POWER SYSTEM-II LABORATORY				
Course	e Code: PC-EE 691	Semester: 6 th				
Durati	ion: 6 months	Maximum marks:100				
Teach	ing Scheme	Examination scheme:				
Theor	y: 0 hr/week	Continuous Internal Assessment:40				
Tutori	al: 0 hr/week	External Assessment: 60				
Practio	cal: 2 hrs/week					
Credit Points:1						
	Laboratory Experiments:					
1.	Study on the characteristics of on load time delay relay and off load time delay relay.					
2						
2.	Test to find out polarity, ratio and magnetization characteristics of CT and PT.					

3.	Test to find out characteristics of
	(a) under voltage relay
	(b) earth fault relay.
4.	Study on DC load flow
5.	Study on AC load flow using Gauss-seidel method
6.	Study on AC load flow using Newton Raphson method.
7.	Study on Economic load dispatch.
8.	Study of different transformer protection schemes by simulation
9.	Study of different generator protection schemes by simulation
10.	Study of different motor protection schemes by simulation
11.	Study of different characteristics of over current relay.
12.	Study of different protection scheme for feeder.

COURSE OUTCOMES:-

PCEE691.1	Demonstrate the performance of different types of relays.
PCEE691.2	Determine polarity, ratio and magnetization characteristics of CT and PT.
	properties.
PCEE691.3	Demonstrate AC and DC load flow by simulation
PCEE691.4	Design different protection schemes for transformer, generator, motor and feeder by
	simulation
PCEE691.5	Determine economic load dispatch of a power plant.

CO-PO MAPPING:-

COs	PROGRAM OUTCOMES(POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PCPCEE691.1	3	-	-	3	-	-	-	-	3	-	-	3
PCPCEE691.2	3	-	-	3	-	-	-	-	3	-	-	3
PCPCEE691.3	3	-	-	3	3	-	-	-	3	-	-	3
PCPCEE691.4	3	-	-	3	3	-	-	-	3	-	-	3
PCPCEE691.5	3	-	-	3	-	-	-	-	3	-	-	3
AVERAGE	3	0	0	3	1.2	0	0	0	3	0	0	3

Name	of the course	MICRO PROCESSOR AND MICRO CONTROLLER LABORATORY				
Cours	e Code: PC-EE 692	Semester: 6 th				
Durat	ion: 6 months	Maximum marks:100				
Teach	ing Scheme	Examination scheme:				
Theor	ry: 0 hr/week	Continuous Internal Assessment:40				
Tutor	ial: 0 hr/week	External Assessment: 60				
Practi	cal: 2 hrs/week					
Credit	t Points:1					
	Laboratory Experiments:					
1.	Programs for 16 bit arithmetic operations for 8086 (using various addressing modes)					
2.	Program for sorting an array for 8086					
3.	Program for searching for a number or character in a string for 8086					
4.	Program for String manipulations for 8086					
5.	Program for digital clock design using 8086.					
6.	Interfacing ADC and DAC to 8086.					
7.	Parallel communication between two microprocessors using 8255.					
8.	Serial communication between two microprocessor kits using 8251.					
9.	Interfacing to 8086 and programming to control stepper motor.					
10.	Programming using arithmetic, logical and bit manipulation instructions of 8051					
11.	Program and verify Timer/Counter in 8051.					

12.	Program and verify interrupt handling in 8051.
13.	UART operation in 8051.
14.	Interfacing LCD to 8051.
15.	Interfacing matrix or keyboard to 8051.
16.	Data transfer from peripheral to memory through DMA controller 8237/8257

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain the architecture of 8086 and 8051 and develop micro- processor/ microcontroller based systems.
- 2. Illustrate the assembly language programming of 8086, 8051
- 3. Explain the interface different peripheral with 8086 and 8051
- 4. Analyze microprocessor, microcontroller, PIC and ARM processors

7	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

Name	e of the course	ELECTRICAL AND ELECTRONICS DESIGN LABORATORY					
Cours	se Code: PC-EE 681	Semester: 6 th					
Durat	tion: 6 months	Maximum marks:100					
TP. 1		Examination scheme:					
	ning Scheme						
Theor	ry: 1hr/week	Continuous Internal Assessment:40					
Tutor	ial: 0 hr/week	External Assessment: 60					
Practi	ical: 4 hrs/week						
Credi	t Points:3						
	GROUP A						
1.	Designing a heating element with specified wattage, voltage and ambient temperature.						
2.	Designing an aircore grounding reactor with specified operating voltage, nominal current and fault current						
3.	Designing the power distribution system for a small township						
4.	Designing a double circuit transmission line for a given voltage level and power (MVA) transfer.						
5.	Wiring and installation design of a multistoried residential building (G+4,not less than 16 dwelling flats with a lift and common pump)						
	GROUP B						
6.	Designing an ONAN distribution transformer.						
7.	Designing a three phase squirrel cage induction motor.						
8.	Designing a three phase wound rotor induction motor.						
9.	Designing a split phase squirrel cage induction motor for a ceiling fan or a domestic pump.						
10.	Designing a permanent magnet fractional hp servo motor.						
	GROUP C	GROUP C					

Department of Electrical Englishment of Technology

Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

11.	Design the control circuit of a Lift mechanism
12.	Design a controller for speed control of DC machine.
13.	Design a controller for speed control of AC machine.
14.	Electronic system design employing electronic hardware (Analog, Digital, Mixed signal), microcontrollers, CPLDs, and FPGAs, PCB design and layout leading to implementation of an application

Topics to be covered in the Lecture class:

	Basic concepts on measurements; Noise in electronic systems; Sensors and signal	
1	conditioning circuits; Introduction to electronic instrumentation and PC based data	01
1.	acquisition; Electronic system design, Analog system design, Interfacing of analog and	01
	digital systems, Embedded systems,; System assembly considerations	

Evaluation Method:

- 1. The students would INDIVIDUALLY design the equipment and systems as per specifications provided by the class teacher following established procedures.
- 2. For each student, one item from each of the three groups would be chosen.
- 3. For unspecified items of specification and or specifications of wires, cables etc., data should be taken by students from handbooks and Indian standard.
- 4. Students should spend the allotted periods for carrying out design computations. 5.

Their attendance shall be recorded.

- 6. Students should maintain a dedicated bound notebook for recording design activities like calculations, formulae used, sketches, flowcharts etc. The notebook should be regularly submitted to the class teacher for review and signature.
- 7. Evaluation would be based on (i) Class attendance (20%), (ii) Design Note Book (30%) (iii) Design Report (30%) (iv) End of semester viva (20%,)

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain basic concept of measurement, noise in electronic system, sensor and signal conditioning circuits
- 2. Analyse PC based data acquisition systems
- 3. Construct circuits with appropriate instruments and safety precautions
- 4. Design heating elements, air core grounding reactor, power distribution system for small township, double circuit transmission line and Electric machines, electronic hardware for controller of lift, speed of AC/DC motor, and for an application with analog, digital, mixed signal, microcontroller and PCB

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

7th Semester

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

Semester-VII

Name of the course	ELECTRIC DRIVE			
Course Code: PC-EE 701	Semester: 7 th			
Duration: 6 months	Maximum Marks: 100			
Teaching Scheme	Examination Scheme			
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks			
Tutorial: 0 hr/week	Assignment & Quiz: 10 Marks			
Practical: 0 hrs/week	Attendance: 05 Marks			
Credit Points: 3	End Semester Exam: 70 Marks			
Objective:				
1. To understand basic concept, classification and principle of operation of Electric Drive.				

2.	To understand methods of starting and braking of Electric Drive.						
3.	To understand methods of control of speed of DC and AC Drives.						
4.	To solve problem related to Electric Drive.						
	equisite						
1.	Basic Electrical Engineering (ES-EE-101)						
2.	Electric Machine-I (PC-EE-401)						
3.	Electric Machine-II(PC-EE-501)						
Unit	Content	Hrs	Marks				
1	Electric Drive: Concept, classification, parts and advantages of	5	IVIGIRS				
1	electrical dives. Types of Loads, Components of load toques,						
	Fundamental torque equations, Equivalent value of drive parameters						
	for loads with rotational and translational motion. Determination of						
	moment of inertia, Steady state stability, Transient stability. Multi-						
	quadrant operation of drives. Load equalization.						
2	Motor power rating: Thermal model of motor for heating and	5					
	cooling, classes of motor duty, determination of motor rating for						
	continuous, short time and intermittent duty, equivalent current,						
	torque and power methods of determination of rating for fluctuating						
	and intermittent loads. Effect of load inertia & environmental						
	factors.						
3	Stating of Electric Drives: Effect of starting on Power supply,	6					
	motor and load. Methods of stating of electric motors. Acceleration						
	time, Energy relation during stating. Methods to reduce the Energy						
	loss during starting.						
	Braking of Electric Drives: Types of braking, braking of DC						
	motor, Induction motor and Synchronous motor, Energy loss						
	during braking,						
4	DC motor drives: Modeling of DC motors, State space modeling,	8					
	block diagram & Transfer function, Single phase, three phases fully						
	controlled and half controlled DC drives. Dual converter control of						
	DC drives. Power factor, supply harmonics and ripple in motor						
	current. Chopper controlled DC motor drives. Closed loop control of						
	DC Drives.						
5	Induction motor drives: Stator voltage variation by three phase	6					
	controllers, Speed control using chopper resistance in the rotor						
	circuit, slip power recovery scheme. Pulse width modulated inverter						
	fed and current source inverter fed induction motor drive.						
	Volts/Hertz Control, Vector or Field oriented control.	5					
6	Synchronous motor drives: Variable frequency control, Self	5					
	Control, Voltage source inverter fed synchronous motor drive,						
7	Vector control. Introduction to Solar and Pottowy Poycered Drive Stamper motor	5					
7	Introduction to Solar and Battery Powered Drive, Stepper motor,	3					
	Switched Reluctance motor drive						
	Industrial application: Drive consideration for Textile mills, Steel rolling mills, Cement						
	mills, Paper mills, Machine tools. Cranes & hoist drives.						

Text books:

- 1. Fundamental of Electrical Drives, G.K. Dubey, New Age International Publication.
- 2. Electric Drives, Vedam Subrahmanyam, TMH
- 3. A first course on Electrical Drives, S.K. Pillai, , New Age International Publication.

Reference books:

- 1. Electric motor drives, R. Krishnan, PHI
- 2. Modern Power Electronics & Ac drives, B.K. Bose, Pearson Education.
- 3. Electric Motor & Drives. Austin Hughes, Newnes.

Course Outcome:

Course outcome codes	Statement
PC-EE-701.1	Apply the knowledge of dynamics of electrical machines on designing of electric drives.
PC-EE-701.2	Investigate the ways of controlling of different types of DC Motor drives.
PC-EE-701.3	Illustrate the different speed control of different types of AC Motor drives.
PC-EE-701.4	Simulate electrical drive systems through PSIM and MATLAB-SIMULINK software.

CO-PO IV	CO-PO Mapping:													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	1	1	-	1	1	1	3	2	3
CO2	2	3	2	3	1	1	1	-	1	1	1	3	2	3
CO3	3	3	3	2	1	1	1	-	1	1	1	3	2	3
CO4	3	3	3	2	1	1	1	-	1	1	1	3	3	2
CO5	2	2	2	2	2	2	3	-	2	2	1	2	2	2
Average	3	3	3	2	1	1	1	0	1	1	1	3	2	3

Name	of the course	CONTROL SYSTEM DESI	IGN			
Cours	e Code: PE-EE 701 A	Semester: 7 th				
Durat	ion: 6 months	Maximum Marks: 100	aximum Marks: 100			
Teach	ning Scheme	Examination Scheme				
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutor	ial: 0 hr/week	Assignment & Quiz: 10) Marks			
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks			
Credi	t Points: 3	End Semester Exam: 7	0 Marks			
Objec						
1.	To understand basic design specifications.					
2.	To understand design of control system in tin	ne domain, frequency do	omain and in St	ate space.		
3.	To understand design of PID controllers					
4.	To solve problem related to design of control s	system.				
	equisite					
1.	Basic Electrical Engineering (ES-EE-101)					
2.	Control system (PC-EE-503)			1		
Unit	Content		Hrs	Marks		
1	Design Specifications: Introduction to de		6			
	philosophy. Introduction to time domain and fi	1 2				
	design specification and its physical relevan-					
	transient and steady state response. Effect of					
	system performance. Effect of addition of zero					
2	Design of Classical Control System in		8			
	Introduction to compensator. Design of					
	compensator in time domain. Feedback					
	compensator design. Feedback compensati	ion. Realization of				
3	compensators.	funguagas damains	8			
3	Design of Classical Control System in Compensator design in frequency domain to		0			
	and transient response. Feedback and Feed for					
	design using bode diagram.	of ward compensator				
4	Design of PID controllers: Design of F	P PI PD and PID	6			
•	controllers in time domain and frequency don					
	and third order systems. Control loop with aux					
	forward control.	,				
5	Control System Design in state space: Rev	view of state space	8			
	representation. Concept of controllability & o					
	pole zero cancellation on the controllability &					
	system, pole placement design through state					
	Formula for feedback gain design. Design of					
	order observer. Separation Principle.					
6	Nonlinearities and its effect on system perfor		4			
	types of non-linearities. Effect of various non-	linearities on system				
l	performance. Singular points. Phase plot analysis.					

Text books:

- 1. Control System Engineering, N. Nise, 8th Edition, John Wiley, 2019.
- 2. Control System Engineering, , I. J. Nagrath and M. Gopal, New Age International Publishers, 2018.
- 3. Design of Feedback Control Systems, R.T. Stefani and G.H. Hostetter, Saunders College Pub, 1994.
- 4. Linear control system analysis and design (conventional and modern), John J.D'azzo, C.H. Houpis, McGraw Hill, 1995.

Reference books:

- 1. Digital Control Engineering, M. Gopal, New Age International Publishers, 2014.
- 2. Automatic Control system, B. C. Kuo, F. Golnaraghi, Wiley, 2014.
- 3. Modern Control Engineering, K. Ogata, 5th Edition, Prentice Hall, 2010.

Course Outcomes:

After completion of this course, the learners will be able to

- 1. Explain the effect of gain, addition of pole and zeros on system's performance.
- 2. Describe time domain and frequency domain design specifications.
- 3. Demonstrate the effect of nonlinearity on system performance.
- 4. Analyze control system in time domain, in frequency domain and in state space.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

Name	of the course	ELECTRICAL ENE & AUDITING	RGY CONSE	RVATION		
Cours	e Code: PE-EE 701B	Semester: 7 th				
	ion: 6 months	Maximum Marks: 100				
Durai	ion. 6 months	Waxiiiuiii Warks. 100				
	ing Scheme	Examination Scheme				
	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
	ial: 0 hr/week	Assignment & Quiz: 10) Marks			
	cal: 0 hrs/week	Attendance: 0	5 Marks			
Credi	t Points: 3	End Semester Exam: 7	0 Marks			
Objec	tive:					
1.	To understand the basic of energy resources,	energy security, energy	conservation and	d pollution.		
2.	To understand the energy management conce	epts.				
3.	To understand energy conservation principles					
4.	To learn the methods of energy audit and usage	ge of instruments				
Pre-R	equisite					
1.						
2.	Electric Machine (PC-EE-401, PC-EE-501)					
3.	Electric Power system (PC-EE-502, PC-EE-601)					
4.	Control System (PC-EE-503)					
Unit	Content		Hrs	Marks		
1	Energy Scenario: Commercial and Non-commercial energy, 5					
	Primary energy resources, commercial en	ergy production, final				
	energy consumption, energy needs of growing	ng economy, long term				
	energy scenario, energy pricing, energy secto	r reforms, energy and				
	environment, energy security, energy co	onservation and its				
	importance, restructuring of the energy su	apply sector, energy				
	strategy for the future, air pollution, clim	ate change. Energy				
	Conservation Act-2001 and its features.					
2	Basics of Thermal Energy management: T		5			
	thermal energy contents of fuel, temperatu					
	capacity, sensible and latent heat, evaporation					
	moist air and humidity & heat transfer, units a					
3	Energy Management & Audit: Definition,		6			
	types of energy audit. Energy manageme					
	understanding energy costs, bench marking,					
	matching energy use to requirement, maximizing system					
	efficiencies, optimizing the input energy requi					
	energy substitution, energy audit instruments					
	balance: Facility as an energy system, method	ls for preparing process				
	flow, material and energy balance diagrams.	1				
4	Energy Efficiency in Electrical Systems: E		8			
	management and maximum demand co					
	improvement, selection & location of caps	acitors. Performance				

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

	assessment of PF capacitors, distribution and transformer losses. Electric motors: Types, losses in induction motors, motor efficiency, factors affecting motor performance, rewinding and motor replacement issues, energy saving opportunities with energy efficient motors.		
5	Energy Efficiency in Industrial Systems: Compressed Air System: Types of air compressors, compressor efficiency, efficient compressor operation, Compressed air system components, capacity assessment, leakage test, factors affecting the performance and savings opportunities in HVAC, Fans and blowers: Types, performance evaluation, efficient system operation, flow control strategies and energy conservation opportunities. Pumps and Pumping System: Types, performance evaluation, efficient system operation, flow control strategies and energy conservation opportunities. Cooling Tower: Types and performance evaluation, efficient system operation, flow control strategies and energy saving opportunities, assessment of cooling towers.	10	
6	Energy Efficient Technologies in Electrical Systems: Maximum demand controllers, automatic power factor controllers, energy efficient motors, soft starters with energy saver, variable speed drives, energy efficient transformers, electronic ballast, occupancy sensors, energy efficient lighting controls, energy saving potential of each technology.	6	

Text books:

- 1. Guide books for National Certification Examination for Energy Manager / Energy Auditors Book-1, General Aspects (available online)
- 2. Guide books for National Certification Examination for Energy Manager / Energy Auditors Book-3, Electrical Utilities (available online)
- 3. Electric Energy Utilization and Conservation, S. C. Tripathy, Tata McGraw Hill, 1991.

Reference books:

1. Success stories of Energy Conservation by BEE, New Delhi (www.bee-india.org)

Course Outcome: After completion of this course, the learners will be able to

Course outcome codes	Statement
PE-EE 701B.1	To understand the technology, economics and regulation related issues associated with energy conservation and energy auditing
PE-EE 701B.2	To analyse the viability of energy conservation projects
PE-EE 701B.3	To integrate various options and assess the business and policy environment regarding energy conservation and

SurTech/ Department of Electrical Engineering / Student Handbook / 2022

	energy auditing
PE-EE 701B.4	To reframe the strategic and policy recommendations on energy conservation and energy auditing

COs	РО	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
PE-EE 701B.1	3	3	2	2	1	2	2	-	-	1	1	2	3	3
PE-EE 701B.2	3	3	3	2	2	2	2	-	2	2	2	3	3	2
PE-EE 701B.3	3	3	3	3	3	3	3	-	3	-	3	3	3	3
PE-EE 701B.4	3	2	3	2	3	3	3	-	2	-	3	3	3	3
Averag e	3	3	3	2	2	2	2	-	2	1	2	3	3	3

Name	of the course	POWER GENERATION ECONOMICS						
	e Code: PE-EE 701C	Semester: 7 th						
	ration: 6 months Maximum Marks: 100							
Durat	ion. O montus	Waxiiiaii Wars. 100						
Teach	ning Scheme	Examination Scheme						
	ry: 3 hrs/week	Mid Semester Exam: 15 Marks						
	ial: 0 hr/week	Assignment & Quiz: 10 Marks						
Practi	cal: 0 hrs/week	Attendance: 05 Marks						
Credi	Credit Points: 3 End Semester Exam: 70 Marks							
Objec	etive:							
1.	To understand the basics of economics of Po	ver generation.						
2.	To understand different methods of Tariff.							
3.	To understand the optimization with unit con	mitment in power system.						
4.	To understand the principle of economic load	dispatch.						
5.	To understand the method of state estimation and load forecasting in a power system.							
Pre-R	equisite							
1.	Electric Power system-I (PC-EE-502)							
2.	Electric Power system-II (PC-EE-601)							
Unit	Content	Hrs Marks						

1	Economics of Generation: Cost of power generation- Thermal,	07
	Hydro and Nuclear. Types of Consumers in a distribution system-	
	Domestic, Commercial, Industrial etc. Concept of load factor, plant	
	capacity factor, plant use factor, diversity factor, demand factor.	
	Choice of size and number of generation units.	
2	Tariff: Block rate, flat rate, two part, maximum demand, Power	08
	factor and three part tariffs. Subsidization and Cross subsidization.	
	Availability tariff of generation companies. Pool tariff of	
	transmission companies. Availability based tariff (ABT).	
3	Unit Commitment: Constraints in Unit Commitment, Spinning	07
	reserve, Thermal unit constraints, Hydro constraints, Must run, Fuel	
	constraints. Unit commitment solution methods,	
4	Economic Dispatch: Transmission loss formulae and its application	08
	in economic load scheduling. Computational methods in economic	
	load scheduling. Active and reactive power optimization	
5	State Estimation and load forecasting in power system:	08
	Introduction, state estimation methods, concept of load forecasting,	
	load forecasting technique and application in power system.	

Text books:

- 1. Economic operation of Power System, L.K. Kirchmayar Wiely India Pvt. Ltd, 2009
- 2. Power system Analysis, operation & control, A. Chakrabarty & S. Haldar, PHI, 2010.
- 3. Modern power system analysis, D.P. Kothari & I.J. Nagtrath, Tata McGraw Hill, 2007.

Reference books:

1. Power generation operation & control, A.J. Wood & B.F. Wollenberg, G.B. Sheble, Wiley, 2013 2. Operation and control in power system, P.S.R. Murthy, BSP Publication. 2009

Course Outcome: After completion of this course, the learners will be able to

- 1. Explain the different terms e.g. load factor etc for economics of generation.
- 2. Apply different types of tariff for electricity pricing.
- 3. Analyze the operation of power system with unit commitment.
- 4. Determine generation levels such that the total cost of generation becomes minimum for a defined level of load & the state of the system given by the voltage magnitudes and phase angles at all buses

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

SurTech/ Department of Electrical Engineering / Student Handbook / 2022

Name	of the course	ARTIFICIAL INTELI	LIGENCE				
	e Code: OE-EE-701A	Semester: 7th					
	tion: 6 months	Maximum Marks: 100					
Teach	ing Scheme	Examination Scheme					
Theor	ry: 3 hrs/week	Mid Semester Exam: 1					
Tutori	ial: 0hr/week	Assignment & Quiz: 1	0 Marks				
Credit	t Points: 3	Attendance: (05 Marks				
		End Semester Exam: 7	'0 Marks				
01:							
Objec		1	C 1.C.	1			
1.	To understand the basic concepts, theories an	nd state-of-the-art techni	iques of artificia	al			
	intelligence.	0 1: 1 :					
2.	To understand basic concepts and application		1:00 0:11				
3.	To learn the application of machine learning	g /A.I algorithms in the	different fields	s of science,			
	medicine, finance etc.						
	equisite (Fig. 63201)						
1.	Programming for problem solving (ES-CS201)						
2.	Mathematics (BS-M301)						
3.	Data structure and algorithm(OE-EE-501A)		***	3.6.1			
Unit	Content	D 11 CAT	Hrs	Marks			
	Introduction: Overview of Artificial intellige	ence- Problems of AI,					
	AI technique, Tic - Tac - Toe problem.						
1	Intelligent Agents: Agents & environment,						
1	structure of agents, goal based agents, utility	based agents, learning	06				
	agents.	0 1 75 6 1	00				
	Problem Solving: Problems, Problem Space						
	problem as state space search, product						
	characteristics, issues in the design of search						
	Search techniques: Solving problems by						
	solving agents, searching for solutions; unifo						
	breadth first search, depth first search, d						
	bidirectional search, comparing uniform search						
2	Heuristic search strategies: Greedy best-fir						
2	memory bounded heuristic search: local s		12				
	optimization problems: Hill climbing search		12				
	search, local beam search, genetic algorithms						
	problems, local search for constraint satisfact						
	Adversarial search: Games, optimal deci						
	games, the minimax search procedure,						
	additional refinements, iterative deepening						
		epresentation issues,	05				
3	representation & mapping, approaches to kno	owieuge representation,	05				
	issues in knowledge representation						
				1			

Department of Electrical Programme From Parting West Bengal University of Technology

Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

4.	Using predicate logic: Representing simple fact in logic, representing instant & ISA relationship, computable functions & predicates, resolution, natural deduction. Probabilistic reasoning [4] Representing knowledge in an uncertain domain, the semantics of Bayesian networks, Dempster-Shafer theory, Fuzzy sets & fuzzy logic	06	
5.	Natural Language processing: Introduction, Syntactic processing, semantic analysis, discourse & pragmatic processing. Learning: Forms of learning, inductive learning, learning decision trees, explanation based learning, learning using relevance information, neural net learning & genetic learning. Expert Systems: Representing and using domain knowledge, expert system shells, knowledge acquisition	08	

Text book:

- 1. Artificial Intelligence, K, Knight, E. Rich, S.B. Nair, 3rd Edition TMH
- 2. A classical approach to Artificial Intelligence, M.C. Trivedi, 2nd Edition, Khanna Publishing House, New Delhi
- 3. Introduction to Artificial Intelligence & Expert Systems, D.W. Patterson, PHI
- 4. Artificial Intelligence A Modern Approach, Stuart Russel, Peter Norvig, Pearson

Reference books

- 1. Computational Intelligence, D. Poole, Alan Mackworth, and Randy Goebe, IOUP
- 2. Logic & Prolog Programming, Saroj Kaushik, New Age International
- 3. Expert Systems principle and programming, J.C. Giarranto, Cengage Learing.

Course Outcome:

After completion of this course, the learners will be able to

COs	CO Statement
CO1	Students will be able to <i>identify</i> the AI problems and <i>describe</i> the learning mechanisms.
CO2	Students will be able to <i>understand</i> the concept of Logic Programming in AI, <i>explain</i> the knowledge representation techniques and <i>choose</i> the planning methodology.
CO3	Students will be able to <i>formulate</i> a problem to an appropriate search problem whenever suitable and produce an optimal solution using appropriate search algorithms.
CO4	Students will be able to <i>design</i> the basic structure of an Expert System to cater the requirement of it and <i>understand</i> the scope of statistical reasoning.

	Artificial Intelligence											
CO'S	PO'S											
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 epartment of Electrical Engineering / Student Handbook / 2022										
SurTech/	<u>Departn</u>	nent of E	<u>llectrica</u>	<u> I Engin</u>	eering /	Student	Handbo	ok / 202	2			

Det)art	mer	1t³0	f Ele	ectr	ical	En	gine	eřii	າຊ³	2/
2	2	1	2	2		2	2	9	-	3	JIS GR Educational Ir
3	3	1		2			2		2		Luucatamai ii
	3	2	-	2		1	-	2	-	2	3
		_	_							_	
2		2	3	1	1	1	3	1	1	1	
2.33	2.67	1.67	2.67	1.67	2.00	1.50	2.67	2.00	2.00	2.00	2.67
	3	3 3	3 3 1 3 2 2 2	3 3 1 2 3 2 - 2 3	3 3 1 2 2 3 2 - 2 2 2 3 1	3 3 1 2 2 2 2 2 2 3 1 1	3 3 1 2 2 2 3 2 - 2 1 2 2 3 1 1 1	3 3 1 2 2 2 2 2 1 - 2 1 - 2 2 3 1 1 3	3 3 1 2 2 2 2 2 3 2 - 2 1 - 2 2 2 3 1 1 1 3 1	3 3 1 2 2 2 2 2 2 3 2 - 2 1 - 2 - 2 2 3 1 1 1 3 1 1	Department of Electrical Engineering 3 3 1 2

Name	e of the course	INTERNET OF THIN	GS				
		Semester: 7th					
		Maximum Marks: 100					
Teacl	ning Scheme I	Examination Scheme					
Theo	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks				
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks				
Credi			05 Marks				
		End Semester Exam: 7	'0 Marks				
Objec							
1.	To understand the terminology, technology and						
2.	To understand the concept of M2M (machine t						
3.	To learn the Python Scripting Language which i						
4.	To understand the Raspberry PI platform, that is						
5.	To understand the implementation of web base	d services on IoT devices	ces.				
Pre-R	equisite						
1.	Programming for problem solving (ES-CS201)		<u> </u>				
Unit	Content		Hrs	Marks			
	Introduction to Internet of Things: Definition	and characteristics					
		hysical design of IoT - IoT Protocols, IoT communication					
	models, Iot Communication APIs, IoT enable						
1	Wireless sensor networks, Cloud computing,		08				
	Communication protocols, Embedded system						
	templates, Domain specific IoTs - Home, C						
	Energy, Retail, Logistics, Agriculture, Industry,						
	IoT and M2M: Software defined networks,						
2	virtualization, difference between SDN and NI	FV for IoT. Basics of	06				
	IoT System Management with NETCOZF,	YANG- NETCONF,					
	YANG, SNMP NETOPEER						
	Introduction to Python: Language features of l						
	data structures, Control of flow, functions, mod		08				
3	handling, data/time operations, classes, Except						
	packages - JSON, XML, HTTP Lib, URL Lib, S	SMTP Lib.					
	IoT Physical Devices and Endpoints: Introducti	1 .					
,	- Interfaces (serial, SPI, I2C). Programming -		08				
4.	Raspberry PI with focus of interfacing externa						
	output, reading input from pins.						
	IoT Physical Servers and Cloud Offerings: Int						
_	Storage models and communication APIs. We		08				
5.	for IoT, Cloud for IoT, Python web appli	cation framework.					
	Designing a RESTful web API						

Text book:

- 1. Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015.
- 2. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2016.
- 3. IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things, David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, Pearson Education, 2017.
- 4. Internet of Things, K.G. Srinivasa , G.M. Siddesh, R.R. Hanumantha, CENGAGE Leaning India, 2018

Reference books:

- 1. Internet of Things (A Hands-on-Approach), Arshdeep Bahga and Vijay Madisetti, VPT, 2014.
- 2. Internet of Things: Architecture and Design Principles, Raj Kamal, McGraw Hill Education, 2017.

Course Outcomes:

Objec	tive:
CO1.	Tell the terminology, technology and its applications
CO2.	Understand the concept of M2M (machine to machine) with necessary protocols
CO3.	Interpret the Python Scripting Language which is used in many IoT devices.
CO4.	Experiment with the Raspberry PI platform, that is widely used in IoT applications.
CO5.	Apply web based services on IoT devices.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	2	3
CO2	3	3	1	2	-	1	-	3	2	2	2	3
CO3	3	3	1	1	1	-	-	3	2	2	2	3
CO4	3	3	1	-	1	1	-	3	2	2	2	3
CO5	3	3	1	-	1	1	-	3	2	2	2	3
Avg.	3	3	1	2	1	1	1	3	2	2	2	3

Name of the course	COMPUTER GRAPHICS
Course Code: OE-EE-701C	Semester: 7th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks

Tutori	al: 0hr/week	Assignment & Quiz:	10 Marks	
Credit			05 Marks	
		End Semester Exam:	70 Marks	
Objec				
1.	To understand fundamental concepts and theo			
2.	To understand the concept of graphics system		•	tions, 2D/3D
	transformations, viewing and projections and v	visible surface detection	n.	
Pre-R	equisite			
1.	Programming for problem solving (ES-CS201)			
2.	Mathematics (BS-M301)			
3.	Data structure and algorithm(OE-EE-501A)			
Unit	Content		Hrs	Marks
	Introduction to Computer graphics &			
	Overview of computer graphics, representing			
	presenting & interacting with pictures			
1	Visualization & image processing; RGB color			
	lookup table; storage tube graphics display, R			
	viewing devices, Plotters, printers, digitizers, l			
	& Passive graphics devices; Computer graphic			
	Scan conversion: Points & lines, Line drawin			
2	algorithm, Bresenham's line algorithm, Circle			
	Ellipse generating algorithm; scan line pol	lygon, fill algorithm,	05	
	boundary fill algorithm, flood fill algorithm.			
	2D Transformations and viewing: Basic			
3	translation, rotation, scaling; Matrix representa			
	coordinates, transformations between coordin		l	
	shear; Transformation of points, lines, paralle			
	lines. Viewing pipeline, Window to view		10	
	transformation, clipping operations, point cl		12	
	clipping circles, polygons & ellipse. Cohen			
	clipping, Sutherland-Hodgeman Polygon of	clipping, Cyrus-beck		
	clipping method	,		
	3D transformation & viewing: 3D transform			
	rotation, scaling & other transformations. Rota			
	axis in space, reflection through an arbitrary p			
	projection transformation; clipping, view port			
	Plane Curves and Surfaces: Curve Representa	06		
4	Curves, Parametric Curves, Parametric Repres	06		
	Parametric Representation of an Ellipse, Param			
	of a Parabola, Parametric Representation of			
	Procedure for using Conic Sections, The Gene			
	Representation of Space Curves, Cubic Spline			
	spline Curves, B-spline Curve Fit, B-spline			
	Parametric Cubic Curves, Quadric Surfaces. B	ezier Suriaces		

	Visible-Surface Determination: Techniques for efficient Visible-		
	Surface Algorithms, Categories of algorithms, Back face removal,	06	
5	The z-Buffer Algorithm, Scan-line method, Painter's algorithms		
	(depth sorting), Area sub-division method, BSP trees, Visible-		
	Surface Ray Tracing, comparison of the methods.		
	Color & shading models : Light & color model; interpolative		
	shading model; Texture.	05	
6	Introduction to Ray-tracing: Human vision and color, Lighting,		
	Reflection and transmission models		

Text book:

- 1. Computer Graphics (C version), Hearn, Baker, Pearson Education, 2002
- 2. Schaum's outlines Computer Graphics, Z. Xiang, R. Plastock, McGraw Hill Education, 2000.
- 3. Mathematical Elements for Computer Graphics, D. F. Rogers, J. A. Adams, McGraw Hill Education, 2017.

Reference books:

1. Computer Graphics, Multimedia and Animation, M.K. Pakhira, PHI, 2010.

COURSE OUTCOMES:

- CO1: Students able to understand and describe the basic concepts and applications of different graphics systems and applications of computer graphics.
- CO2: Students able to relate and use various design algorithms for scan conversion, filling of basic objects, geometric transformations on graphics objects and their application in composite form
- CO3: Students able to extract scene with different clipping methods and its transformation to graphics display device. Also able to explore and explain projections and visible surface detection techniques.
- CO4: Students able to justify and design their perspective of modern computer system with modeling, analysis and interpretation of 2D and 3D visual information attributes for all aspects.

CO-1 O 1	-Inhhine	•											
				COM	PUTE	R GRA	PHICS	8					
CO'S					PO'S								
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	2		3		3	3	2		3	2	2	
CO2	2	3	3		3		2	3	3		3	1	
CO3	2	3	2		1	2	2	3	2			2	
CO4	2	3	2	2	2		2	3	2	2	3	3	

Avg	2.25	2.75	2.33	2.50	2.00	2.50	2.25	2.75	2.33	2.50	2.67	2.00

Name	of the course	EMBEDDED SYSTEN	Л			
		Semester: 7th	/1			
		Maximum Marks: 100				
Durai	non. 6 months	Maximum Marks. 100				
		Examination Scheme				
		Mid Semester Exam: 1	5 Marks			
		Assignment & Quiz: 1				
Credit)5 Marks			
	I	End Semester Exam: 7	0 Marks			
Objec	tive:					
1.	To understand fundamental concepts of desig	n principles of embedden	ded system.			
2.	To understand the role of firmware, operating			systems		
	equisite	systems in conclusion	With hardware	systems.		
1.	Programming for problem solving (ES-CS 201)					
2.	Micro processor & Micro controller (PC-EE 602))				
Unit	Content)	Hrs	Marks		
Cilit	Introduction to Embedded Systems: Definit	tion of Embedded	1115	IVICIKS		
	System, Embedded Systems Vs General Compu					
	History of Embedded Systems, Classification,		05			
1	Areas, Purpose of Embedded Systems, Charact					
	Attributes of Embedded Systems.	cristics and Quanty				
	Typical Embedded System: Core of the E	mhedded System:				
2	General Purpose and Domain Specific Process					
2	Commercial Off-The-Shelf Components (COT)		07			
	RAM, Memory according to the type of l					
	Interfacing techniques, Memory Shadowing, M					
	Embedded Systems, Sensors and Actuator					
	Interface: Onboard and External Communication					
3	Advanced Embedded Microcontrollers: PIC					
	Overview and features; PIC 16C6X/7X - File					
	(FSR), PIC Reset Actions, PIC Oscillator conne					
	Organization, PIC 16C6X/7X instructions, Add					
	Ports, Interrupts in PIC 16C61/71, Timers.					
	Microcontroller - Introduction, Pin diagram,					
	organization, Interrupts, I/O Ports, Timers.	registers, weinery	12			
	Introduction to AVR microcontroller: Intro	oduction to AVR				
	(ATmega 328p-pu) microcontroller, pin lay					
	program memory, Data Direction register, Port					
	PWM registers (8-bit), ADC registers.	i Registers (1 OK 1 x),				
	Introduction to ARM microcontroller: Are	obitootume of ADM				
	Embedded microcontroller, ARM instruction se					
4	Embedded Firmware: Reset Circuit, Brown-out					
¬	Oscillator Unit, Real Time Clock, Watchdo	· · · · · · · · · · · · · · · · · · ·	06			
	Firmware Design Approaches and Developmen		00			
5	RTOS Based Embedded System Design:		10			
J	KTOB Dascu Embedded Bystem Design.	Operating System	10			

Basics, Types of Operating Sy	ems, Tasks, Process and Threads,
Multiprocessing and Multi	sking, Task Scheduling, Task
Synchronization: Task Com	unication/Synchronization Issues,
Task Synchronization Technic	es, Device Drivers, How to Choose
an RTOS.	

Text book:

1. Introduction to Embedded Systems, Shibu K.V, Mc Graw Hill. 2017

Reference books:

- 1. Embedded Systems Architecture, Programming and design, Raj Kamal, McGraw Hill Education, 2017
- 2. Embedded System Design: A unified Hardware/ Software introduction, Tony Givargis and Frank Vahid, Wiley 2006
- 3. Design with PIC Microcontrollers, J. B. Peatman, Pearson India, 2008
- 4. Microcontrollers (Theory and Applications) A. V. Deshmukh, TMH Education Private Limited, 2017
- 5. Programming and Customizing the AVR Microcontroller, Dhananjay Gadre, McGraw Hill Education, 2014.

Course Outcome:

After completion of this course, the students will be able to

CO1: discuss the definition, purpose, application, classification, quality characteristics and attributes of Embedded Systems

CO2: explain the internal structure of the Embedded system.

CO3: interface IO devices and other peripherals with micro controllers in Embedded systems.

CO4: write programs for Micro controllers in Embedded systems along with application of the concept of Embedded firmware in design of Embedded systems.

CO5: design RTOS based Embedded systems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	102	100	101		2	107	2	10)	1010	1011	1012
COI		-	-	-	-	3	-		-	-	-	-
CO ₂	1	1	-	1	2	2	1	-	-	-	-	-
CO3	2	3	1	-	3	1	-	-	-	-	1	-
CO4	2	2	-	1	3	1	1	-	-	_	-	-
CO ₅	2	2	1	1	2	1	-	1	-	-	1	-

Name	of the course	DIGITAL IMAGE PR	OCESSING				
	e Code: OE-EE 702B	Semester: 7th					
	ion: 6 months	Maximum Marks: 100	1				
Durat	ion. o montus	Wiaximum Warks. 100	'				
Teach	ing Scheme	Examination Scheme					
	y: 3 hrs/week	Mid Semester Exam: 15 Marks					
Tutori	al: 0hr/week	Assignment & Quiz: 10 Marks					
Credit	Points: 3		05 Marks				
		End Semester Exam: 7	'0 Marks				
Objec							
1.	To understand fundamentals and mathematic		for image proce	essing.			
2.	To understand the image enhancement techni-	•					
3.	To understand the image restoration procedur						
4.	To understand the image compression proced	dures.					
Pre-R	equisite						
1.	Digital Signal Processing (OE-EE 601A)						
Unit	Content		Hrs	Marks			
	Introduction: Fundamental Steps in Digita						
	Components of an Image Processing Sys						
	Quantization, Representing Digital Images (I		08				
1	Basic Relationships Between Pixels- Neighbor						
	pixels in image, Applications of Image I						
	imaging, Robot vision, Character recognition,						
	Image Enhancement In The Spatial Domai						
2	Level Transformations, Histogram Processin						
	Arithmetic/Logic Operations, Basics of Spatia		08				
	Spatial Filters, Sharpening Spatial Filters,	Combining Spatial					
	Enhancement Methods.						
	Image Enhancement In Frequency Domain:						
3	Transform, Discrete Fourier Transform (DFT		08				
	Discrete Cosine Transform (DCT), Image	filtering in frequency					
	domain.	0. 1 .					
4	Image Segmentation: Introduction, Detection		08				
	line detection, Edge detection, Edge lin						
	segmentation- Region growing, split and me						
	processing, regional processing, Hough train	nsform, Segmentation					
	using Threshold.						
	Image Compression: Introduction, coding Re	3 ,					
_	redundancy, image compression model,		08				
5	compression, Huffman Coding, Arithmetic C						
	Transform Coding, Sub-image size selection	-					
	implementation using FFT, Run length coding	Ţ.					

Text book:

- 1. Digital Image Processing, R.C Gonzalez and R. Woods, Pearson publication, 2017
- 2. Digital Image Processing, Anil K. Jain, Prentice-Hall, India, 1988.

Reference books:

- 1. Digital Image Processing, W.K. Pratt , John Wiley & Sons, 1991.
- 2. Digital Image Processing and Analysis, B. Chanda & D. Dutta Majumder Prentice-Hall India, 2011
- 3. Image Processing- Theory, Algorithms & Architecture, M. A. Sid-Ahmed, McGraw-Hill, 1994.

Course Outcome:

Students are able to

CO1: understand the need for image transforms different types of image transforms and their properties.

CO2: develop any image processing application and learn different techniques employed for the enhancement of images.

CO3: learn different causes for image degradation and overview of image restoration techniques

CO4: Understand the need for image compression and to learn the spatial and frequency domain techniques of image compression

CO5:. learn different feature extraction techniques for image analysis and recognition

	Digital Image Processing													
co's	PO'S													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	3	3	3	_	3	3	3	-	3	_		
CO2	2	2	3	3	2	3	3	2	2	-	2	3		
CO3	3	2	3	3	2	3	_	-	2	3	-	3		
CO4	_	_	3	3	2	_	2	3	1	3	3	2		
CO5	2	1	3	_	3	2	2	2	-	3	2	_		
Average	2.00	1.50	3.00	3.00	2.40	2.67	2.50	2.50	2.00	3.00	2.50	2.67		

Name	of the course	COMPUTER NETWORK						
		Semester: 7th	×141					
		Maximum Marks: 100						
Teach	ing Scheme	Examination Scheme						
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks					
		Assignment & Quiz: 1						
Credit			05 Marks					
		End Semester Exam: 7	0 Marks					
01:								
Objec			<u> </u>	1 '				
1.	To understand the fundamental concepts of da		computer netv	vorking.				
2.	To understand different layers of OSI, TCP/IP i	model in networking.						
	equisite	<u> </u>						
1.	Data Structure and Algorithm (OE-EE 501A))						
2.	Operating System							
Unit	Content	1. 1.	Hrs	Marks				
	Overview of Data Communication and Netwo							
	Data communications: components, data repre		06					
1	etc.), direction of data flow (simplex, half de	1 '	00					
1	network criteria, physical structure (type of co							
	categories of network (LAN, MAN, WAN); In	•						
	Protocols and standards; Reference models: O	· · · · · · · · · · · · · · · · · · ·						
	TCP/IP reference model, their comparative stud							
	Physical Level: Overview of data (analog & d		0.4					
2	& digital), transmission (analog & digital) &		04					
	(guided & unguided); Circuit Switching: tir							
	division switch, TDM bus; Telephone Network	(-1,-,-,-4-,, -,,-1, 1,:4						
3	Data link Layer: Types of errors, framing							
3	stuffing), error detection & correction meth							
	Protocols: Stop & wait ARQ, Go-Back-N AR ARQ, HDLC.	Q, Selective repeat	10					
	Medium Access sub layer:		10					
	Point to Point Protocol, LCP, NCP, Token	Ding: Deservation						
	Polling, Multiple access protocols: Pure ALO							
	CSMA, CSMA/CD, CSMA/CA Traditional Et							
	(in brief).	memet, iast ethernet						
4	Network layer: Internetworking & devices	· Reneaters Hubs						
7	Bridges, Switches, Router, Gateway; Address							
	sub netting; Routing : techniques, static vs.		12					
	Unicast Routing Protocols: RIP, OSPF, BGP; (
	IP, ICMP, IPV6.	omer rowells. Aid,						
	Transport layer:							
	Process to Process delivery; UDP; TCP; Cong	gestion Control: Open						
	Loop, Closed Loop choke packets; Quality of							
	improve QoS: Leaky bucket algorithm, Token	•						

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

5	Application Layer: Introduction to DNS, SMTP, SNMP, FTP, HTTP & WWW; Security: Cryptography (Public, Private Key based), Digital Signature, Firewalls.	00	
	Modern topics:	08	
	ISDN services & ATM, DSL technology, Cable Modem:		
	Architecture and operation in brief. Wireless LAN: IEEE 802.11,		
	Introduction to blue-tooth.:		

Text book:

- 1. Data Communications and Networking, A. Forouzan, TMH, 2004
- 2. Computer Networks, A. S. Tanenbaum, Pearson Education, 2003.
- 3. Data and Computer Communications (5th Ed.), W. Stallings, Pearson Education, 2017.

Reference books:

- 1. Communication Networks, Leon, Garica, Widjaja, McGraw Hill, 2017.
- 2. High performance Communication Networks, Walrand, Elsvier India, 2004.
- 3. Internetworking with TCP/IP, vol. 1, 2, 3, Comer, Pearson Education, 2000.

Course Outcome:

CO1: Students will be able to describe the components of data communication system and the purpose of layered architecture.

CO2: Students will be able to explain and illustrate the application of each layer of OSI and TCP/IP reference model

CO3: Students will be able to explain different protocols.

CO4: Students will be able to assess the functions of different layers.

	Computer Networks											
co's		PO'S										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	ı	3	-	2	2	3	-	-	-	2	2
CO2	3	3	1	2	1	2	3	3	-	2	2	1
CO3	2	3	-	-	3	1	2	3	-	-	2	2
CO4	2	2	3	2	-	2	2	2	3	2	-	-

Avg	2.50	2.67	2.33	2.00	2.00	1.75	2.50	2.67	3.00	2.00	2.00	1.67

Name o	of the course	PRINCIPLE OF MANAGEMEENT				
Course	Code: HM-EE 701	Semester: 7 th				
Duratio	on: 6 months	Maximum Marks: 100				
	ng Scheme	Examination Scheme				
	: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutoria	l: 0 hr/week	Assignment & Quiz: 10) Marks			
	al: 0 hrs/week		5 Marks			
Credit I	Points: 3	End Semester Exam: 7	0 Marks			
Objecti						
	To understand basic concept and approaches					
	To understand planning and decision making					
	To understand organizational design and struc	cture.				
	To understand various aspects of leadership.					
Pre-Rec						
	English (HM- HU 201)			7.5.1		
Unit	Content		Hrs	Marks		
	Concept & approaches to management: M		8			
1 1	of the term Management, Management as					
	Management as a Profession, Management a					
	between Management & Administration; Le					
1 1	Roles of a Manager, Quality of a good Man					
	Management, Limitations of Management, B	Susiness Environment				
	and its interaction with Management.					
	Approaches to Management - Classical, Neo-					
	Contributors to Management Thought - Ta					
1	Theory, Fayol's and Administrative Theor	•				
1	Management Thought. Various Approaches	•				
	Schools of Management Thought) Indian Man					
	Planning & decision making: Planning: I		8			
	Process, Types, Principles, Significance & L					
	Strategic Planning - Meaning & Process, MI					
	and Requirements for Implementation,					
	Meaning & Types, Forecasting - Meaning & T					
	Decision Making - Meaning, Types, Proc	ess, Significance &				
	Limitations					
	Organization design & Structure: Organ		8			
1	Process, Principles, Organization Structure					
	Forms: Line, Functional, Line & Staff,					
1	Committees; Formal and Informal Organization; Departmentation -					
	Meaning and Bases; Span of Control - Me	eaning and Factors				
	Influencing; Authority,					
	Responsibility and Accountability; Delegation					
	Principles; Centralization and Decentralization					
	of Decentralization; Difference between I	Delegation and				
	Decentralization.					

4	Directing: Motivation - Meaning , Definition, Significance &	8	
	Limitations; Financial and non-financial incentives of Motivation		
	Leadership - Meaning, Definition, Significance of Leadership,		
	Leadership styles Type, Process and Barriers of Communication,		
	Strategies to overcome the Barriers.		
5	Customer Management - Market Planning & Research, Marketing	8	
	Mix, Advertising & Brand Management.		
	Operations & Technology Management - Production &		
	Operations Management, Logistics & Supply Chain Management,		
	TQM, Kaizen & Six Sigma, MIS.		

Text books:

- 1. Essentials of Management. H. Koontz and H. Weihrich, 7th Edition, Tata McGraw Hill
- 2. Principles of Management, Premvir Kapoor, Khanna Publishing House, 2019
- 3. Principles of Management Text and Cases, Dipak Kumar Bhattacharyya. Pearson Education India, 2011.

Reference books:

- 1. Management-Text & Cases, V.S.P Rao & Hari V. Krishna, Excel Books, 2005
- 2. Principles of Management, T. Ramaswami, Himalaya Publishing House, 2014
- 3. Management of Technology and Operations, R. Ray Gehani, Wiley, 1998

Course Outcome: After completion of this course, the learners will be able to

COURSE OUTCOMES (COs)						
CODE	DESCRIPTION					
HMEE 701.CO 1	Explain the concepts and approaches of management					
HMEE 701.CO 2	Demonstrate the roles, skills and functions of management and apply different methods of Customer, Operation and Technology management.					
HMEE 701.CO 3	Diagnose and solve organizational problems and acquire skills of good leader in an organization.					
HMEE 701.CO 4	Identify the complexities associated with management of human resources in the organizations and integrate the learning in handling these complexities.					

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	1	-	-	1	-	-	-	2	2	3	3	2
CO2	-	-	-	-	-	1	-	2	3	3	3	2
CO3	-	-	-	2	-	1	-	2	3	2	3	2
CO4	-	-	-	1	-	1	-	2	3	1	3	2
Average	1	-	-	1.3	-	1	-	2	2.75	2.25	3	2

Name	of the course	ELECTRIC DRIVE LABORATORY				
Cours	e Code: PC-EE 791	Semester: 7 th				
Durat	ion: 6 months	Maximum marks:100				
Teach	ing Scheme	Examination scheme:				
Theor	ry: 0 hr/week	Continuous Internal Assessment:40				
Tutor	ial: 0 hr/week	External Assessment: 60				
Practi	cal: 2 hrs/week					
Credi	t Points:1					
	Laboratory Experiments:					
1.	Study of speed control of Thysistor controlled	DC Drive.				
2.	Study of speed control of Chopper fed DC Dri	ve				
3.	Study of speed control of single phase motor	using TRIAC.				
4.	Study of PWM Inverter fed 3 phase Induction	Motor control using software.				
5.	Study of VSI / CSI fed Induction motor Drive	using software.				
6.	Study of V/f control of 3phase Induction motor	or drive.				
7.	Study of permanent magnet synchronous motor drive fed by PWM Inverter using Software.					
8.	Study of Regenerative / Dynamic braking operation for DC Motor - Study using software.					
9.	Study of Regenerative / Dynamic braking ope	eration of AC motor - study using software.				
10.	Study of PC/PLC based AC/DC motor control operation.					
	<u> </u>					

Course outcome: After completion of this course, the learners will be able to

- 1. Identify appropriate equipment and instruments for the experiment.
- 2. Choose the instrument for application to the experiment.
- 3. Construct circuits with appropriate instruments and safety precautions.
- 4. Apply different methods of control of Electric Drive in the laboratory.
- 5. Analyse experimental data obtained in the laboratory.

CO-PO Mapping:

Digital Image Processing

co's	PO'S											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	3	3	_	3	3	3	-	3	_
CO2	2	2	3	3	2	3	3	2	2	-	2	3
CO3	3	2	3	3	2	3	_	-	2	3	-	3
CO4	_	1	3	3	2	_	2	3	1	3	3	2
CO5	2	1	3		3	2	2	2	-	3	2	_
Average	2.00	1.50	3.00	3.00	2.40	2.67	2.50	2.50	2.00	3.00	2.50	2.67

8th Semester

Semester-VIII

		1				
Name	of the course	UTILIZATION OF ELECT	RIC POWER			
Course	e Code: PC-EE 801	Semester: 8 th				
Durati	ion: 6 months	Maximum Marks: 100				
Teach	ing Scheme	Examination Scheme				
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutori	al: 0 hr/week	Assignment & Quiz: 10	Marks			
Practio	etical: 0 hrs/week Attendance: 05 Marks					
Credit Points: 3 End Semester Exam: 70 Marks						
Objec	Objective:					
1.	To understand basic principle of illuminati	on and good lighting p	ractices			
2.	To understand the method of Electric heating	ng, Welding and Electr	rolytic process	es.		
3.	To understand the concepts of Electrical					
4.	To solve numerical problems on the topics studied.					
Pre-R	equisite					
1.	Electric Machine (PC-EE-401, PC-EE-501)					
2.	Control System (PC-EE-503)					
3.	Power Electronics (PC-EE-504)					
Unit	Content Hrs Marks					

1	Electric Traction: Requirement of an ideal traction system, Supply		
	system for electric traction, Train movement (speed time curve,		
	simplified speed time curve, average speed and schedule speed),		
	Mechanism of train movement (energy consumption, tractive effort		
	during acceleration, tractive effort on a gradient, tractive effort for		
	resistance, power & energy output for the driving axles, factors		
	affecting specific energy consumption, coefficient of adhesion).	10	
	Electric traction motor & their control: Parallel and series operation	10	
	of Series and Shunt motor with equal and unequal wheel diameter,		
	effect of sudden change of in supply voltage, Temporary		
	interruption of supply, Tractive effort and horse power.		
	Use of AC series motor and Induction motor for traction.		
	Traction motor control: DC series motor control, Multiple unit		
	control, Braking of electric motors, Electrolysis by current through		
	earth, current collection in traction system, Power electronic		
	controllers in traction system.		
2	Electric Lighting: Definition of terms; laws of illumination;		
	Luminaries; Lighting requirements; Illumination levels; lamp		
	selection and maintenance; Lighting schemes, calculations & design		
	- Interior lighting - industrial, Factory, residential lighting; Exterior	8	
	lighting - Flood, street lighting, lighting for displays and signaling -		
	neon signs, LED-LCD displays beacons and lighting for		
	surveillance; Energy Conservation codes for lighting; lighting		
	controls - daylight sensors and occupancy sensors; controller design.		
3	Electric Heating: Advantages of electrical heating, Heating	08	
	methods, Resistance heating - direct and indirect resistance heating,		
	electric ovens, their temperature range, properties of resistance		
	heating elements, domestic water heaters and other heating		
	appliances and thermostat control circuit ,Induction heating;		
	principle of core type and coreless induction furnace, Electric arc		
4		08	
-		00	
	1		
5		06	
	garvanizing and its applications, Frinciple of anodising and its		
	galvanizing and its applications, Principle of anodising and its applications, Electroplating on non-conducting materials		
	applications, Electroplating on non-conducting materials, Manufacture of chemicals by electrolytic process and electrolysis		
5	heating, direct and indirect arc heating, construction, working and applications of arc furnace, Dielectric heating, applications in various industrial fields, Infra-red heating and its applications, Microwave heating, Simple design problems of resistance heating element. Electric Welding: Advantages of electric welding, Welding methods, Principles of resistance welding, types -spot, projection seam and butt, welding and welding equipment used, Principle of arc production, electric arc welding, characteristics of arc, carbon arc, metal arc, hydrogen arc welding and their applications, Power supply required, Advantages of using coated electrodes, comparison between AC and DC arc welding, welding control circuits, welding of aluminum and copper, Introduction to TIG, MIG welding Electrolytic processes: Need of electro-deposition, Laws of electrolysis, process of electro-deposition - clearing, operation, deposition of metals, polishing, buffing, Equipment and accessories for electroplating, Factors affecting electro-deposition, Principle of	08	

Text books:

- 1. Generation Distribution and Utilization of Electrical Energy, C.L. Wadhawa, New Age International Publishers, 2015
- 2. Art and Science of Utilization of Electrical Energy, H. Partab, Dhanpat Rai & co, 2017
- 3. Utilisation of Electric Energy, E.Openahaw Taylor, Universities press, 1981

Reference books:

- 1. Generation and Utilization of Electrical Energy by S. Sivanagaruju, Pearson, 2010.
- 2. Utilization of Electrical Energy by J. B. Gupta, Rajeev Manglik, Rohit Manglik, Kataria Publications, 2012.

Course Outcome:

Course outcome codes	Statement
PC-EE 801.1	Implement the knowledge of different traction methods used
	in electrical engineering and solve practical related complex
	engineering problems
PC-EE 801.2	Design projects in team using the concept of illumination
	engineering
PC-EE 801.3	Carry out research work in future and implement them for
	solving professional engineering problems
PC-EE 801.4	Solve problems in the areas of electric heating and
	electrolysis

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
PC-EE	3	3	3	2	3	2	2	-	2	-	2	2
801.1												
PC-EE	2	3	2	3	3	2	3	-	3	3	3	2
801.2												
PC-EE	3	3	2	3	3	2	3	-	3	2	3	2
801.3												
PC-EE	3	3	1	1	2	2	2	-	2	-	2	3
801.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

Name	of the course	LINE COMMUTATED A	ND ACTIVE PWM	1				
Cours	a Code: DE EE 901 A	RECTIFIERS Semester: 8 th						
	e Code: PE-EE 801A ion: 6 months	Maximum Marks: 100						
Durai	ion: o months	iviaximum iviairs. 100						
Teach	ing Scheme	Examination Scheme						
	ry: 3 hrs/week	Mid Semester Exam: 15 Marks						
	ial: 0 hr/week	Assignment & Quiz: 10 Marks						
	cal: 0 hrs/week		5 Marks					
	t Points: 3	End Semester Exam: 7						
Objec								
1.	To understand the principle of operation of d		ts and filters					
2.	To understand the method of steady state anal							
3.	To understand the different control techniques							
4.	To understand the application of different con	verters						
	equisite (PG FF 502)							
1.	Control System (PC-EE-503)							
2.	Power Electronics (PC-EE-504)			3.6.1				
Unit	Content		Hrs	Marks				
1	Diode rectifiers with passive filtering:	1 1 1 0 11						
	Half-wave diode rectifier with RL and RC loa		-					
	diode rectifier with L, C and LC filter; 3-phas		5					
	L, C and LC filter; continuous and discontinuous							
	current wave shape, effect of source induction overlap.	ciance; commutation						
2	Thyristor rectifiers with passive filtering:							
2	Half-wave thyristor rectifier with RL and	RC loads: 1-phase						
	thyristor rectifier with L and LC filter; 3- ph		5					
	with L and LC filter; continuous and discor							
	input current waveshape	initia dis conduction,						
3	Multi-Pulse converter:							
	Review of transformer phase shifting, gene	ration of 6-phase ac						
	voltage from 3-phase ac, 6-pulse converter as		6					
	with inductive loads, steady state analysis, con	mmutation overlap,						
	notches during commutation.	_						
4	Single-phase ac-dc single-switch boost conve		6					
	Review of dc-dc boost converter, power circu	_						
	dc converter, steady state analysis, unity pov	wer factor operation,						
	closed-loop control structure.							
5	Ac-dc bidirectional boost converter:		6					
	Review of 1-phase inverter and 3-phase inverter							
	phase and 3-phase ac-dc boost converter, s							
	operation at leading, lagging and unity power							
	and regenerating modes. Phasor diagrams, structure.	ciosea-ioop control						
6	Isolated single-phase ac-dc fly back converte	or.						
"	Dc-dc fly back converter, output voltage as a		08					
	and transformer turns ratio. Power circuit							
L	and dansformer tarms ratio, rower effective	t of ac ac fry back	l					

	converter, steady state analysis, unity power factor operation, closed	
	loop control structure	

Text books:

- 1. Power Electronics: Converters, Applications and Design, N. Mohan and T. M. Undeland, John Wiley & Sons, 2007.
- 2. Power Electronics: Essentials and Applications, L. Umanand, Wiley India, 2009
- 3. Principles of Power Electronics, J.G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley, 1991.

Reference books:

1. Fundamentals of Power Electronics, R. W. Erickson and D. Maksimovic, Springer Science & Business Media, 2001.

Course Outcome: After completion of this course, the learners will be able to

- 1. Explain the principle of operation of different converters.
- 2. Suggest appropriate scheme for control of different converters.
- 3. Analyze converters for different applications.
- 4. Point out the application of different filters.

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
PE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801A.1												
PE-EE	2	3	2	3	3	2	3	-	3	3	3	2
801A.2												
PE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801A.3												
PE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801A.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

1 INAIIIC	of the course	POWER SYSTEM DYNA	MICS AND CON	ΓROL				
	e Code: PE-EE 801B	Semester: 8 th						
	ion: 6 months	Maximum Marks: 100						
	-							
Teach	ing Scheme	Examination Scheme						
	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks					
	ial: 0 hr/week	Assignment & Quiz: 10 Marks						
Practi	cal: 0 hrs/week	Attendance: 05 Marks						
Credi	t Points: 3	End Semester Exam: 7	0 Marks					
Objec								
1.	To understand power stability problems and t	the basic concepts of mo	deling and anal	ysis of				
	dynamical systems.							
2.	To understand the Modeling of power system	components - generators	s, transmission l	ines,				
	excitation and prime mover controllers.							
3.	To understand the Stability of single machine	and multi-machine syste	ems using digita	l simulation				
	and small-signal analysis techniques.							
4.	To understand the impact of stability problems	s on power system plann	ing, and operati	on.				
	equisite							
1.	Power System (PC-EE-502, PC-EE-601)							
2.	Control System (PC-EE-503)							
3.	Electric Machine(PC-EE-401, PC-EE501)		**	3.5.1				
Unit	Content	. 1	Hrs	Marks				
1	Introduction to Power System Operations: In		2					
	system stability. Power System Operations an		3					
	problems in Power System. Impact on Power S	System Operations and						
2	control. Analysis of Linear Dynamical System and N	umaniaal Mathada						
2	Analysis of dynamical System, Concept of Eq							
	Alialysis of dynamical System, Concept of Eq							
1	Large Disturbance Stability Modal Analysi		5					
	Large Disturbance Stability. Modal Analysi	s of Linear System.	5					
	Analysis using Numerical Integration Techniq	s of Linear System. ues. Issues in	5					
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst	s of Linear System. ues. Issues in tem.	5					
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Sys Modeling of Synchronous Machines and Ass	s of Linear System. ues. Issues in tem.	5					
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers:	s of Linear System. ues. Issues in tem. ociated	5					
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical	s of Linear System. ues. Issues in tem. ociated Characteristics. Rotor	5					
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical position dependent model. D-Q Transfor	s of Linear System. ues. Issues in tem. ociated Characteristics. Rotor mation. Model with	5					
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical position dependent model. D-Q Transfor Standard Parameters. Steady State Analy	s of Linear System. ues. Issues in tem. ociated Characteristics. Rotor mation. Model with ysis of Synchronous						
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical position dependent model. D-Q Transfor Standard Parameters. Steady State Analy Machine. Short Circuit Transient Analysis	s of Linear System. ues. Issues in tem. occiated Characteristics. Rotor mation. Model with ysis of Synchronous of a Synchronous	10					
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical position dependent model. D-Q Transfor Standard Parameters. Steady State Analy Machine. Short Circuit Transient Analysis Machine. Synchronization of Synchronous M	s of Linear System. ues. Issues in tem. ociated Characteristics. Rotor mation. Model with ysis of Synchronous of a Synchronous achine to an Infinite						
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical position dependent model. D-Q Transfor Standard Parameters. Steady State Analy Machine. Short Circuit Transient Analysis	s of Linear System. ues. Issues in tem. ociated Characteristics. Rotor mation. Model with ysis of Synchronous of a Synchronous achine to an Infinite Systems. Physical						
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical position dependent model. D-Q Transfor Standard Parameters. Steady State Analy Machine. Short Circuit Transient Analysis Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Mover	s of Linear System. ues. Issues in tem. ociated Characteristics. Rotor mation. Model with ysis of Synchronous of a Synchronous achine to an Infinite Systems. Physical of Control. Automatic						
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical position dependent model. D-Q Transfor Standard Parameters. Steady State Analy Machine. Short Circuit Transient Analysis Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Mover Characteristics and Models. Excitation System Voltage Regulator. Prime Mover Control Governors.	s of Linear System. ues. Issues in tem. ociated Characteristics. Rotor mation. Model with ysis of Synchronous of a Synchronous achine to an Infinite Systems. Physical n Control. Automatic ol Systems. Speed						
3	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical position dependent model. D-Q Transfor Standard Parameters. Steady State Analy Machine. Short Circuit Transient Analysis Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Mover Characteristics and Models. Excitation System Voltage Regulator. Prime Mover Control Governors. Modeling of other Power System Component	s of Linear System. ues. Issues in tem. ociated Characteristics. Rotor mation. Model with ysis of Synchronous achine to an Infinite Systems. Physical a Control. Automatic ol Systems. Speed						
	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical position dependent model. D-Q Transfor Standard Parameters. Steady State Analy Machine. Short Circuit Transient Analysis Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Mover Characteristics and Models. Excitation System Voltage Regulator. Prime Mover Control Governors. Modeling of other Power System Component Modeling of Transmission Lines and Loads	s of Linear System. ues. Issues in tem. ociated Characteristics. Rotor mation. Model with ysis of Synchronous of a Synchronous achine to an Infinite Systems. Physical a Control. Automatic of Systems. Speed ts: . Transmission Line	10					
	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Sys Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical position dependent model. D-Q Transfor Standard Parameters. Steady State Analy Machine. Short Circuit Transient Analysis Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Mover Characteristics and Models. Excitation System Voltage Regulator. Prime Mover Control Governors. Modeling of other Power System Component Modeling of Transmission Lines and Loads Physical Characteristics. Transmission Line M	s of Linear System. ues. Issues in tem. ociated Characteristics. Rotor mation. Model with ysis of Synchronous of a Synchronous achine to an Infinite Systems. Physical n Control. Automatic ol Systems. Speed ts: . Transmission Line Iodeling. Load Models						
	Analysis using Numerical Integration Techniq Modeling: Slow and Fast Transients, Stiff Syst Modeling of Synchronous Machines and Ass Controllers: Modeling of synchronous machine: Physical position dependent model. D-Q Transfor Standard Parameters. Steady State Analy Machine. Short Circuit Transient Analysis Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Mover Characteristics and Models. Excitation System Voltage Regulator. Prime Mover Control Governors. Modeling of other Power System Component Modeling of Transmission Lines and Loads	s of Linear System. ues. Issues in tem. ociated Characteristics. Rotor mation. Model with ysis of Synchronous of a Synchronous achine to an Infinite Systems. Physical n Control. Automatic oll Systems. Speed ts: . Transmission Line Iodeling. Load Models oltage	10					

	controllers, Wind Energy Systems.	
5	Stability Analysis:	
	Angular stability analysis in Single Machine Infinite Bus System.	
	Angular Stability in multi-machine systems - Intra-plant, Local and	
	Inter-area modes. Frequency Stability: Centre of Inertia Motion.	
	Load Sharing: Governor droop. Single Machine Load Bus System:	10
	Voltage Stability. Introduction to Tensional Oscillations and the	
	SSR phenomenon. Stability Analysis Tools: Transient Stability	
	Programs, Small Signal Analysis Programs	
6	Enhancing System Stability:	
	Planning Measures. Stabilizing Controllers (Power System	4
	Stabilizers). Operational Measures- Preventive Control. Emergency	
	Control.	

Text books:

- 1. Power System Dynamics, Stability and Control, K.R. Padiyar. B. S. Publications, 2002.
- 2. Power System Stability and Control, Prabha Kundur. McGraw Hill, 2006.
- 3. Power System Dynamics and Stability, P. W. Sauer and M. A. Pai . Pearson, 1997.

Reference books:

- 1. The Essentials of Power System Dynamics and Control, Hemanshu Roy Pota, Springer, 2018
- 2. Power System Dynamics and Control, H.G. Kwanty and K.M.Miller, Birkhauser. 2016

Course Outcome: After completion of this course, the learners will be able to

- 1. Explain the model of power system components
- 2. Select the appropriate model for required analysis.
- 3. Analyze the performance of the system with small signal analysis.
- 4. Evaluate the stability of the single and multi machine systems. .

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801B.1												
PE-EE	2	3	2	3	3	2	3	-	3	3	3	2
801B.2												
PE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801B.3												
PE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801B.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

Name	of the course	ADVANCED ELECTRIC D	DRIVE					
Cours	e Code: PE-EE 801C	Semester: 8 th						
Durat	ion: 6 months	Maximum Marks: 100						
Teach	ning Scheme	Examination Scheme						
	ry: 3 hrs/week	Mid Semester Exam: 15 Marks						
Tutor	ial: 0 hr/week	Assignment & Quiz: 10 Marks						
Practi	cal: 0 hrs/week	Attendance: 05 Marks						
Credi	t Points: 3	End Semester Exam: 7	0 Marks					
Objec	etive:							
1.	To understand basic principle of operation of	f Power Converters used	for AC drives					
2.	To understand the method for modeling and c	ontrol of Induction moto	or and Synchron	ous motor.				
3.	To understand the method of control of Perma							
	drive.							
4.	To understand the principle of DSP based mo	tion control.						
Pre-R	equisite							
1.	Electric Machine (PC-EE-401, PC-EE-501)							
2.	Control System (PC-EE-503)							
3.	Power Electronics (PC-EE-504)							
Unit	Content		Hrs	Marks				
1	Power Converters for AC drives: PWM	control of inverter,	8					
	selected harmonic elimination, space vector	modulation, current						
	control of VSI, three level inverter, Different	topologies, SVM for 3						
	level inverter, Diode rectifier with boost chop	per, PWM converter as						
	line side rectifier, current fed inverters w	rith self-commutated						
	devices. Control of CSI, H bridge as a 4-Q dri	ive.						
2	Induction motor drives: Different transform	ations and reference	8					
	frame theory, modeling of induction machine	es, voltage fed inverter						
	control-v/f control, vector control, direct	ct torque and flux						
	control(DTC).							
3	Synchronous motor drives: Modeling of syr		5					
	open loop v/f control, vector control, direct t	torque control, CSI fed						
	synchronous motor drives.							
4	Permanent magnet motor drives: Introduc		5					
	motors, BLDC and PMSM drive configuration							
	diagrams, Speed and torque control in BLDC		_					
5	Switched reluctance motor drives: Evol		5					
	reluctance motors, various topologies for SR							
	Closed loop speed and torque control of SRM		_					
6	DSP based motion control: Use of DSPs		5					
	various DSPs available, realization of some b							
	implementation of DSP based motion control.							

Text books:

- 1. Modern Power Electronics and AC Drives, B. K. Bose, PHI, 2005
- 2. Permanent Magnet Synchronous and Brushless DC motor Drives, R. Krishnan, CRC Press, 2009
- 3. DSP based Electromechanical Motion Control, H. A. Taliyat and S. G. Campbell, CRC Press, 2003.

Reference books:

1. Analysis of Electric Machinery and Drive Systems, P.C. Krause, O. Wasynczuk and S.D. Sudhoff, Wiley, 2013.

Course Outcome: After completion of this course, the learners will be able to

- 1. Explain the principle of operation of converters for AC drives & basic blocks for DSP based motion control.
- 2. Understand Induction and Synchronous motor by reference frame theory.
- 3. Analyze different control methods to control speed and torque of Induction and Synchronous Motor
- 4. Point out the configurations and method of speed control of Induction and Synchronous motor, BLDC, PMSM and SRM. 5. Realize basic blocks for DSP based motion control.

COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12
PE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801C.1												
PE-EE	2	3	2	3	3	2	3	-	3	3	3	2
801C.2												
PE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801C.3												
PE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801C.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

		T							
Name	e of the course	INDUSTRIAL AUTOMAT	ΓΙΟΝ AND CONT	ROL					
Cours	e Code: PE-EE 801D	Semester: 8 th							
Durat	ion: 6 months	Maximum Marks: 100							
Teach	ning Scheme	Examination Scheme							
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks						
	ial: 0 hr/week	Assignment & Quiz: 10	Marks						
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks						
Credi	t Points: 3	End Semester Exam: 7	0 Marks						
Objec	etive:								
1.	To understand Industrial automation and cor	ntrol.							
2.	To understand the different control modes.								
3.	To understand advance industrial control strategies	tegies.							
4.	To understand the Programmable Logic Cont		ntrol system.						
Pre-R	equisite		<u>-</u>						
1.	Control System (PC-EEE-503)								
Unit	Content		Hrs	Marks					
1	Introduction to Industrial Automation and	Control:							
	Architecture of Industrial Automation Syste	ems. General review of	08						
	process, Process control & automation, Servo and regulatory control,								
	Characteristic parameter of a process: Pro-								
	potential, Process resistance, Process capacitance, Process lag, Self								
	regulation.								

2	Different control modes and Implementation: On-off control, Multistep, Time proportional, Proportional, Proportional-integral, Proportional -derivative, Proportional-integral-derivative, integral windup, bump less transfer, Inverse derivative control, controller tuning techniques and selection guideline. Implementation of PID Controllers.	08
3	Advance Industrial control strategies (Brief analysis): Feedforward control, Cascade control, Ratio control, Selective Control, Split Range Control, Adaptive control.	06
4	Actuators and final control elements: Classification of Actuators: pneumatic, hydraulic, electro- pneumatic, and stepper motor operated actuators. Pumps and motors, proportional and servo valves.	06
5	Programmable Logic Controller: Block diagram, Classification, Basic Architecture and Functions; Input-Output Modules, power supply. PLC Programming: Relay logic and ladder logic, PLC ladder diagram realization, PLC Timer, PLC Counter, advance instructions. PLC programming examples for Industrial maintenance and control.	06
6	Distributed Control System (DCS): Basic concept and overview of DCS, DCS System Architecture, configuration, operation and features. HMI and SCADA, OSI Communication Standard and Fieldbus.	06

Text books:

- 1. Industrial Instrumentation and Control, S. K. Singh, Tata-McGraw, 2010
- 2. Industrial Instrumentation, Control and Automation, S. Mukhopadhyay, S. Sen and A. K. Deb, Jaico Publishing House, 2012.
- 3. Process Control, K. Krishnaswamy, New Age International Publishers, 2009
- 4. Programmable Logic Controllers with Control Logix, Jon Stenerson, Delmar Cengage learning, 2009

Reference books:

- 1. Automatic Process Control, D.P. Eckman, John Wiley and sons, 1958
- 2. Process control instrumentation technology, C.D. Johnson, PHI, 2005
- 3. Instrument Engineers Handbook, B.G. Liptak, CRC Press, 2003

Course Outcome: After completion of this course, the learners will be able to

- 1. Explain the basic structure of industrial automation and control & different distributed control systems
- 2. Classify different types of control actions of controllers.
- 3. Analyze control strategies of different processes of industry.
- 4. Illustrate the construction and use of different types of actuators and control valves.

COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
PE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801D.1												
PE-EE	2	3	2	3	3	2	3	1	3	3	3	2

801D.2												
PE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801D.3												
PE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801D.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

NT	. C 41	COET COMPLITING	FECUNIONE				
	of the course e Code: OE-EE 801A	SOFT COMPUTING To Semester: 8th	I ECHNIQUES				
	ion: 6 months	Maximum Marks: 100					
Durat	ion: 6 months	Maximum Marks: 100					
Teach	ing Scheme	Examination Scheme					
	y: 3 hrs/week	Mid Semester Exam: 1	15 Marks				
	al: 0hr/week	Assignment & Quiz: 1					
	Points: 3)5 Marks				
Crean	Tomo. 5	End Semester Exam: 7					
		Bita Sufficient Bitain ,	<u> </u>				
Objec	tive:						
1.	To understand the theory of Neural network	k, Fuzzy logic and Genet	ic Algorithm.				
2.	To Introduce neural networks, Genetic Algor			ng			
	perspective.		_	_			
Pre-R	equisite						
1.	Programming for problem solving (ES-CS 201))					
Unit	Content		Hrs	Marks			
	Introduction: Introduction to soft computing;	introduction to fuzzy					
1	sets and fuzzy logic systems; introduction to l		05				
	neural network; introduction to Genetic Algor	rithm.					
2	Fuzzy sets and Fuzzy logic systems: Classical	l Sets and Fuzzy Sets					
	and Fuzzy relations: Operations on Classic						
	classical sets, Fuzzy set operations, prop-	erties of fuzzy sets,					
	cardinality, operations, and properties	of fuzzy relations.					
	Membership functions: Features of members	hip functions, standard					
	forms and boundaries, different fuzzification	n methods. Fuzzy to					
	Crisp conversions: Lambda Cuts for fuzzy s		12				
	Defuzzification methods. Classical Logic	c and Fuzzy Logic:					
	Classical predicate logic, Fuzzy Logic, Appre	oximate reasoning and					
	Fuzzy Implication Fuzzy Rule based Systems	s: Linguistic Hedges,					
	Fuzzy Rule based system - Aggregation of	fuzzy Rules, Fuzzy					
	Inference System- Mamdani Fuzzy Models -						
	Applications of Fuzzy Logic: How Fuzzy Lo	gic is applied in Home					
	Appliances, General Fuzzy Logic contro	ollers, Basic Medical					
	Diagnostic systems and Weather forecasting						
	Fuzzy Control, Convention control systems, Fuzzy logic control vs.						
	PID control.						

3	Neural Network: Introduction to Neural Networks: Advent of		
	Modern Neuroscience, Classical AI and Neural Networks,		
	Biological Neurons and Artificial neural network; model of artificial		
	neuron. Learning Methods: Hebbian, competitive, Boltzman etc.,		
	Neural Network models: Perceptron, Adaline and Madaline	10	
	networks; single layer network; Back propagation and multi layer		
	networks. Competitive learning networks: Kohonen self organizing		
	networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy		
	modelling:Applications of Neural Networks: Pattern Recognition		
	and classification:		
4	Genetic Algorithms: Simple GA, crossover and mutation, Multi-		
	objective Genetic Algorithm (MOGA). Applications of Genetic	08	
	Algorithm: genetic algorithms in search and optimization, GA based		
	clustering Algorithm, Image processing and pattern Recognition.		
5	Other Soft Computing techniques: Simulated Annealing, Tabu	05	
	search, Ant colony optimization (ACO), Particle Swarm		
	Optimization (PSO).		

Text book:

- 1. Fuzzy logic with engineering applications, Timothy J. Ross, Wiley ,2011
- 2. Neural Networks Fuxxy Logic and Genetic Algorithm: Synthesis and Application, S. Rajashekharan and G.A. Vijaylakshmi Pai, PHI,2013
- 3. Principles of Soft Computing, S N Sivanandam, S.N. Deepa, Wiley, 2011.

Reference books:

- 1. Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg, Addison Wesley, 1989.
- 2. Neuro-Fuzzy and Soft computing, Jang, Sun, Mizutani, Pearson, 1996.
- 3. Neural Networks: A Classroom Approach, Satish Kumar, McGraw Hill, 2017.
- 4. Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg, Pearson/PHI
- 5. Introduction to Soft Computing-Neuro Fuzzy and Genetic Algorithm, Samir Roy & Udit Chakraborty, Pearson, 2013.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain soft computing techniques and their roles in building intelligent machines
- 2. Analyse the feasibility of application of soft computing techniques for a particular problem
- 3. Evaluate solutions by various soft computing approaches for a given problem.
- 4. Apply different soft computing techniques to solve Engineering problems.

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
OE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801A.1												

OE-EE	2	3	2	3	3	2	3	_	3	3	3	2
OL-LL	2	,		,	,		,)	, ,	ر	۷
801A.2												
OE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801A.3												
OE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801A.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

		IOMEDICAL INSTI	RUMENTATIC	N			
		emester: 8th					
Durat	ion: 6 months M	Maximum Marks: 100					
		xamination Scheme					
		lid Semester Exam: 1					
		ssignment & Quiz: 1					
Credi			05 Marks				
	E	nd Semester Exam: 7	0 Marks				
Objec	etive:						
1.	To understand the fundamental of Medical In	struments					
2.	To understand Biomedical recorders, Medical Im		ıroical Theran	entic			
	Instruments and Medical Laboratory equipment		agicar, riicrap				
Pre-R	equisite	υ.					
1.	Analog Electronics (PC-PC-EE-303)						
2.	Digital Electronics (PC-EE-402)						
Unit	Content		Hrs	Marks			
Cint	Fundamentals of Medical Instruments:		1115	Marks			
1	Fundamentals of medical instrumentation- Sour	rces of biomedical					
1	signals, Generalized medical instrumentation						
	diagram.	Olock	08				
	Medical electrodes - ECG, EEG, EMG, Defib	rillator Medical					
	transducers: Body temperature, Blood pressure						
	Classification of Medical instruments based						
2	Biomedical Recorders:	on application -					
~	Electrocardiograph (ECG) machine -ECG block	diagram Binolar					
	and unipolar leads, Phono-cardiograph.	diagram, Dipolar	08				
	Electroencephalograph						
	(EEG). 10-20 electrode placement system, EEG	Freedout device					
	Electro-myograph (EMG) machine. Bio-feedba						
3	Medical Imaging Equipments:	ex monumentation.					
	X-ray machine, CT-Scan machine, MRI Scan ma	ochine Properties of					
	ultrasound, Ultrasonic foetal monitors. Echoence		08				
	cardiograph. Colour Doppler ultrasound machin						
4	Surgical & Therapeutic Instruments:	·.					
'	Electro-surgery machine (cautery), Hemo-dialyst	sis machine Muscle	06				
	stimulators, Defibrilator Machine	Sis machine wascie					
5	Medical Laboratory Instruments:						
	Types of test- Blood cell, Bio chemistry, Blood Cell Counter, Bio						
	chemistry analyze, Auto analyzer, Blood gas analyzer.						
	chemistry unaryze, riato unaryzer, brood gas and	1,201.					
	l						

Text book:

- 1. Handbook of Biomedical instrumentation, R. S. Khandpur, Tata McGraw Hill, New Delhi, 2003
- 2. Introduction to Biomedical equipment technology, Joseph J. Carr and J.M. Brown , Pearson education, New Delhi, 2000
- 3. Biomedical instrumentation measurements , Lesli P Cromwell, Fred J. Weibell, Erich A. Pfeiffer, PHI Learning, New Delhi, 2018

Reference books:

- 1. Medical instrumentation application & design, John G. Webster, Editor, John Wiley and Sons, New Delhi, 2009
- 2. Introduction to Biomedical Instrumentation, Mandeep Singh, PHI, 2010

Course Outcome:

After completion of this course, the learners will be able to

- 1. Describe the principle of medical transducers for temperature, pressure and respiration rate.
- 2. Explain the principle of operation of Biomedical recorders, Medical Imaging equipments Surgical & Therapeutic Instruments and Medical Laboratory Instruments.
- 3. Analyse different Medical laboratory equipments for different tests .
- 4. Suggest any measurement application and suggest suitable measurement methods.

COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
OE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801B.1												
OE-EE	2	3	2	3	3	2	3	-	3	3	3	2
801B.2												
OE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801B.3												
OE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801B.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

	of the course	INTRODUCTION TO MACHINE LEARNING					
	e Code: OE-EE 801C	Semester: 8th					
Durat	ion: 6 months	Maximum Marks: 100					
	ing Scheme	Examination Scheme					
	y: 3 hrs/week	Mid Semester Exam: 1					
	al: 0hr/week	Assignment & Quiz: 1					
Credit	Points: 3	Attendance: CEnd Semester Exam: 7	05 Marks				
		End Semester Exam: /	U Marks				
Objec	tive:						
1.	To understand fundamental concepts of Mac	chine Learning					
2.	To apply Machine Learning in real life applica						
Pre-R	equisite						
1.	Programming for problem solving (ES-CS 201))					
Unit	Content		Hrs	Marks			
	Basics of Machine Learning and Python:						
	Algebra, Definition of learning systems; D						
_	system, Goals and applications of machine lea		12				
1	of learning system, Basic concepts in Machine						
	Python Basics - string, number, list, tuple, D	oictionary, functions,					
	conditional statement, Loop statements, Num	npy, Matplotlib, simple					
	programming exercises using python.						
	Supervised Learning: Linear regression with						
2	regression with multiple variables, Logistic						
	Methods for Classification; Linear Meth	nods for Regression;	07				
	Decision trees, overfitting.						
3	Support Vector Machines: Introduction,	_					
	Classification, Mathematics behind	Maximum Margin	07				
	Classification, Maximum Margin linear separa	ators, non-linear SVM,					
	Kernels for learning non-linear functions.						
4	Unsupervised Learning: Learning from		0.7				
	Clustering - Hierarchical Agglomerative		07				
	partitional clustering, Expectation maximiz						
	clustering; Dimensionality reduction - Pr	rincipal Component					
	Analysis, factor Analysis, Multidimension	nal scaling, Linear					
_	Discriminant Analysis.						
5	Applications of Machine Learning: Strategies		07				
	design, performance measurement, Reading						
	Data, handwriting recognition, object detection	n, tace detection.					

Text book:

- 1. Machine Learning, Dr. Rajjiv Chopra, Khanna Publishing, 2020
- 2. Introduction to Machine Learning, EthemAlpaydi, PHII, 2015
- 3. Building Machine Learning Systems with Python, Richert& Coelho, Packt publishing, 2013

Reference books:

- 1. The Elements Of Statistical Learning: Data mining, Infarence and Prediction, Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2017.
- 2. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, MIT Press 2012.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Describe the basics concepts and classification of Machine Learning.
- 2. Explain Supervised Learning concepts.
- 3. Analyse the concept of Support Vector Machine.
- 5. Survey unsupervised learning concepts and dimensionality reduction techniques.

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
OE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801C.1												
OE-EE	2	3	2	3	3	2	3	-	3	3	3	2
801C.2												
OE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801C.3												
OE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801C.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

Name	of the course	SENSORS AND TRA	NSDUCERS			
	e Code: OE-EE 801D	Semester: 8th				
Durati	on: 6 months	Maximum Marks: 100)			
Teachi	ing Scheme	Examination Scheme				
Theory	y: 3 hrs/week	Mid Semester Exam: 1	15 Marks			
Tutoria	al: 0hr/week	Assignment & Quiz: 1	0 Marks			
Credit	Points: 3	Attendance:	05 Marks			
		End Semester Exam: 7	70 Marks			
Object	rive:					
1.	To understand the principle of operation of	Transducers and Sensors				
2.	To understand the application of Transducer	rs and Sensors				
Pre-Re	equisite					
1.	Electric Circuit Theory (PC-EEE-301)					
2.	Electromagnetic Field Theory (PC-EEE-303)					
Unit	Content	Hrs	Marks			
	Introduction:					
1	Definition, significance of measurement and	d instruments. Principle	05			
	of sensing & transduction, transducer classification, Transducer					
	characteristics, emerging fields of sensor technologies.					

2	Resistive transducers: Potentiometers: types, loading error, metal	
	and semiconductor strain gauges, types, resistance measuring	05
	methods, strain gauge applications: Load and torque measurement.	
3	Inductive transducers: Transformer type, synchros, eddy current	
	transducers, LVDT: Construction, material, input-output	08
	characteristics.	
	Optical Sensors: LDR, Photo Diode, Stroboscope, IR Sensor.	
4	Capacitive transducers: Variable distance-parallel plate type,	
	variable area- parallel plate type, cylindrical type, differential type,	
	variable dielectric constant type, calculation of sensitivity.	
	Capacitive microphone, fluid level measurement.	
	Piezoelectric transducers: piezoelectric effects, Materials, natural	10
	and synthetic types - their comparison, Charge and voltage co-	
	efficient, Force and stress sensing, displacement measurement.	
	Magnetic Transducer: Hall effect sensors, Magnetostrictive	
	transducers: principle, positive and negative magnetostriction.	
5	Thermal sensors: Resistance temperature detector (RTD):	
	principle, materials and types; Thermistor: principle, materials and	06
	types; Thermocouple, Thermoelectric effects, laws of thermocouple,	
	thermocouple types, construction. IC temperature sensor, PTAT type	
	sensor.	
	Radiation sensors: types, characteristics and comparison.	
	Pyroelectric type.	
6	Micro-sensors and smart sensors: Construction, characteristics	
	and applications. Standards for smart sensor interface.	04
	Recent Trends in Sensor Technologies: Introduction; Film sensors	
	(Thick film sensors, thin film sensor)	

Text book:

- 1. Transducers and Instrumentation , D.V.S. Murthy, Prentice Hall, 2008
- 2. Sensors and Transducers, D. Patranabis, Prentice Hall India, 2003
- 3. Measurement Systems Application and Design, E.O. Doebelin, McGraw-Hill, 2008

Reference books:

- 1. Instrument Transducers An Introduction to their Performance and Design", H.K.P. Neubert, Oxford University Press, 1999.
- 2. Measurement Systems and Sensors, WaldemarNawrocki Artech House, 2016.
- 3. Semiconductor sensors", S.M. Sze, Wiley Interscience, 1994
- 4. Instrumentation Measurement and Analysis", B. C. Nakara&Chaudhry TATA McGraw-Hill, 2009
- 5. Smart Sensors and Sensing Technology, Daniel E. Suarez, Nova Science Publishers, 2011

Course Outcome:

Course outcome codes	Statement						
EE-802B.1	Classify the sensors and transducers used in electrical engineering						
EE-802B.2	Implement the knowledge gained to create different						

	techniques to design experiments in a team									
EE-802B.3	Carry out project and research by designing new instruments using the different sensing and transducing instruments									
EE-802B.4	Develop solutions for complex professional engineering problems									

COs	РО	PO1	PO1	PO1	PS0	PS0								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
EE- 802B.1	3	3	2	2	1	2	2	-	-	1	1	2	3	3
EE- 802B.2	3	3	3	2	2	2	2	-	2	2	2	3	3	2
EE- 802B.3	3	3	3	3	3	3	3	-	3	-	3	3	3	3
EE- 802B.4	3	2	3	2	3	3	3	-	2	-	3	3	3	3
Averag e	3	3	3	2	2	2	2	-	2	1	2	3	3	3